Ac1 пересекает его ось цилиндра

Авто помощник

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости, в том числе и ВС1. Значит, угол АВС1 прямой.

б) Поскольку прямые ВВ1 и СС1 параллельны, искомый угол равен углу АС1С.

Треугольники АВС и АСС1 являются прямоугольными, поэтому:

Приведем другой способ решений.

a) Введем систему координат, как показано на рисунке. Найдем координаты точек A, B и C1. Пусть а радиус основания — r, тогда

Найдем координаты векторов и

Найдем скалярное произведение векторов и

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Ac1 пересекает его ось цилиндра

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости, в том числе и ВС1. Значит, угол АВС1 прямой.

б) Поскольку прямые ВВ1 и СС1 параллельны, искомый угол равен углу АС1С.

Треугольники АВС и АСС1 являются прямоугольными, поэтому:

Приведем другой способ решений.

a) Введем систему координат, как показано на рисунке. Найдем координаты точек A, B и C1. Пусть а радиус основания — r, тогда

Найдем координаты векторов и

Найдем скалярное произведение векторов и

Видео:✓ Задача про цилиндр | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Задача про цилиндр  | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис Трушин

Ac1 пересекает его ось цилиндра

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости. Значит, угол АВС1 прямой.

б) Поскольку прямые ВВ1 и СС1 параллельны, искомый угол равен углу АС1С.

Треугольники АВС и АСС1 являются прямоугольными, поэтому:

Приведем другой способ решений.

a) Введем систему координат, как показано на рисунке. Найдем координаты точек A, B и C1. Пусть а радиус основания — r, тогда

Найдем координаты векторов и

Найдем длины векторов и

Найдем косинус угла между этими векторами:

Значит, угол АВС1 прямой.

Аналоги к заданию № 520803: 520853 520879 520915 Все

Видео:Задание 14 из реального ЕГЭСкачать

Задание 14 из реального ЕГЭ

Ac1 пересекает его ось цилиндра

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна плоскости ВСС1б а значит, угол АВС1 прямой.

б) Отрезок AC является диаметром основания цилиндра. Значит, длина

окружности основания цилиндра равна

Следовательно, площадь боковой поверхности цилиндра равна

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Ac1 пересекает его ось цилиндра

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости. Значит, угол АВС1 прямой.

б) Треугольник ABC1 прямоугольный, поэтому искомое расстояние равно его высоте h, проведённой к гипотенузе. Получаем:

Аналоги к заданию № 520803: 520853 520879 520915 Все

💥 Видео

Стереометрия из реального ЕГЭ. Конус и цилиндр. Вывезешь катку? | ЕГЭ по математике 2024 | СВСкачать

Стереометрия из реального ЕГЭ. Конус и цилиндр. Вывезешь катку? | ЕГЭ по математике 2024 | СВ

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.

как ПРОЕЦИРОВАТЬ в Физике!Скачать

как ПРОЕЦИРОВАТЬ в Физике!

ЕГЭ|Задание 14 - Цилиндр, конус и шарСкачать

ЕГЭ|Задание 14 - Цилиндр, конус и шар

5.1. Циклоалканы: Строение, изомерия. ЕГЭ по химииСкачать

5.1. Циклоалканы: Строение, изомерия. ЕГЭ по химии

РАЗБОР СЛИВА ЕГЭ 2024 | Ильич ЕГЭ 2024 Профильная Математика | СЛИВ ОТ ЯЩЕНКО |Скачать

РАЗБОР СЛИВА ЕГЭ 2024 | Ильич ЕГЭ 2024 Профильная Математика | СЛИВ ОТ ЯЩЕНКО |

ВАРИАНТ #16 ЕГЭ 2021 ФИПИ НА 100 БАЛЛОВ (МАТЕМАТИКА ПРОФИЛЬ)Скачать

ВАРИАНТ #16 ЕГЭ 2021 ФИПИ НА 100 БАЛЛОВ (МАТЕМАТИКА ПРОФИЛЬ)

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

ЦИЛИНДР геометрия егэ по математике профильный уровень ЯщенкоСкачать

ЦИЛИНДР геометрия егэ по математике профильный уровень Ященко

✓ Задача, которая сломала Трушина | Комбинаторная геометрия | Ботай со мной #082 | Борис ТрушинСкачать

✓ Задача, которая сломала Трушина | Комбинаторная геометрия | Ботай со мной #082 | Борис Трушин

Задание 14 | ЕГЭ 2024 Математика (профиль) | Самые простые задачи по стереометрии из 2й частиСкачать

Задание 14 | ЕГЭ 2024 Математика (профиль) | Самые простые задачи по стереометрии из 2й части

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | УмскулСкачать

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | Умскул

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭ

ЕГЭ Задание 14 Цилиндр Теорема о трёх перпендикулярахСкачать

ЕГЭ Задание 14 Цилиндр Теорема о трёх перпендикулярах

№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1Скачать

№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1
Поделиться или сохранить к себе:
Технарь знаток