Видео:Никасил (Nikasil) и Алюсил (Alusil) - прогресс или провал?Скачать
Разбираемся в особенностях Nikasil, Alusil и плазменного напыления
Производить алюминиевые блоки ДВС без чугунных гильз — выгодное дело. Такой мотор легче, а теплопроводность алюминия лучше по сравнению с чугуном. К тому же, головка блока и сами поршни также изготовляются из «летучего металла», а значит, нет проблем с разностью коэффициентов теплового расширения. Проблема, по сути одна — алюминиевым цилиндрам необходимо прочное покрытие. Об этом и поговорим.
Именно это покрытие первым получило массовое применение. А компания Mahle, которая стала использовать этот способ производства моторов без чугунных гильз, вписала свое имя в историю. Впрочем, была и другая «контора» под названием Kolbenschmidt, но она поначалу осталась в тени конкурента.
Первоначально никасиловое покрытие считалось панацей для роторных силовых агрегатов, а пик его популярности пришелся на 90-е годы прошлого столетия. Но, например, в Формуле-1 и в мотоциклетных двигателях (яркий тому пример — Suzuki Hayabusa) это покрытие до сих пор актуально.
В принципе, более прочного и надежного вещества для цилиндров так и не изобрели. Никасиловое покрытие твердое и в тоже время вязкое. Оно не трескается и вполне пригодно для проведения ремонта — его структура «не против» небольшой расточки при необходимости. Но надобность в этом возникает в крайне редких ситуациях.
Англичане готовятся превзойти рубеж в 1609 км/ч
Казалось бы, идеальное решение найдено, но все не так просто. Едва никасил пошел «в массы», выяснилось, что при всех плюсах у покрытия есть и серьезный недостаток — боязнь сернистых соединений. Это и подвело эту технологию в Северной Америке.
Дело в том, что как раз в те годы в США и Канаде был в ходу «вредный» для никасила бензин. Поэтому покрытие чрезвычайно быстро «умирало», что, понятно, вызывало негодование со стороны автовладельцев.
В наши дни сернистого бензина днем с огнем не сыщешь, однако никасиловое покрытие из обращения изъяли. Почему?
А потому что оно все-таки слишком хорошее и долговечное, а значит — дорогое. Процесс производства весьма сложен, и требует особого гальванического нанесения, а также нуждается в механической обработке. Но главная причина — в сверхнадежности: она сегодня автопроизводителям банально не нужна.
После «заката» никасила у той самой «теневой» фирмы Kolbenschmidt появился шанс на реванш. Именно она откопала в закромах старинную технологию алюсилового покрытия для блоков цилиндров: метод Alusil был запатентован еще в 1927 году фирмой Schweizer & Fehrenbach, но особого признания тогда не снискал, и поэтому был отправлен на полку.
Продвижению алюсила «в народ» сильно поспособствовало то, что фирма Kolbenschmidt в те годы относилась к Audi Group. Специалисты «Ауди» быстро взяли быка за рога, и внедрили технологию Alusil в производство.
Смысл в том, что гильза, а при желании и весь блок цилиндров, производятся из сплава «летучего металла» с повышенным (не менее 17%) содержанием кремния в виде кристаллов. На выходе получается так называемый заэвтектический сплав. Он представляет собой кристаллический, твердый слой, с «запрятанным» внизу алюминием.
Такое покрытие не боится износа, а процесс производства проще (а главное, дешевле), нежели у никасилового покрытия. При этом алюсил в прочности и надежности ничем конкуренту не уступает. Да и благодаря «родственности» алюминиевых сплавов блока и поршня тепловые зазоры, опять же, можно свести до минимума.
Но и у алюсила хватает недостатков. Во-первых, сам слой покрытия получается тоньше, чем у того же никасила. Во-вторых, оно достаточно хрупкое. В-третьих, алюсил не выдерживает испытания перегревом и «атаки» каких-либо твердых частиц — даже банального нагара с колец.
Проходимость, универсальность, управляемость: выбираем компромисс
В-четвертых, одной из особенностей процесса производства является то, что никто не сможет со стопроцентной уверенностью сказать, удастся ли избежать каверн или мест с неоднородным качеством покрытия. И хотя алюсил на сегодняшний день весьма распространен во «вселенной» алюминиевых силовых агрегатов, полностью одержать победу над банальными чугунными гильзами он так и не сумел.
Плазменное напыление
Даже такую экзотику можно обнаружить на современных двигателях. Плазменное напыление, например, встречается на силовых агрегатах от VW — на 2.5 TDI. Да-да, именно на тех самых двигателях, дурная слава о которых добралась даже до людей, которые о машинах ничего не знают в принципе.
Похожим методом лазерного нанесения кремния с применением химического травления пользуются и в баварском концерне. Причем не на каких-то редких — экспериментальных или особо элитных машинах, — а на новых моторах BMW «глобальной серии» B38−58.
Теоретически, плазменное напыление — это технология перспективная и прогрессивная, только вот пока до совершенства она доведена крайне условно. Так что связываться с ней точно не стоит.
Читайте также: Что делают цилиндры в двигателе
Читайте новости «Свободной Прессы» в Google.News и Яндекс.Новостях, а так же подписывайтесь на наши каналы в Яндекс.Дзен, Telegram и MediaMetrics.
Озвучены проекты по снижению смертности в авариях с пьяными водителями
К 2030 году КНР будет производить 10 млн таких машин, чего не снилось Западу
Зорькину — орден и отставка, Медведеву — суд
Видео:Никасиловое покрытие стенок цилиндровСкачать
Алюсил не виноват: настоящие причины ненадежности алюминиевых моторов
Легкие цельноалюминиевые моторы с тонким алюсиловым покрытием цилиндров потихоньку становятся пугалом для покупателей машин на вторичном рынке. При этом сам по себе алюсил неправильно было бы считать абсолютным злом. Попробуем разобраться, что это вообще такое и стоит ли бояться этой технологии.
Алюсил? Не, не слышал
Сам по себе алюминий – металл достаточно мягкий, – это знают все, кто гнул в детстве бабушкины алюминиевые вилки. И даже прочности его сплавов, которые используются в автомобилестроении, недостаточно для использования на поверхности цилиндра – он попросту не выдержит трения поршневых колец.
Но соблазн использовать цельноалюминиевый мотор слишком велик. Масса алюминиевого блока в разы меньше, чем у чугунного, он лучше прогревается, у него меньше напряжения в сопряжении блока и головки цилиндров. Казалось бы, запрессовать чугунные гильзы в алюминий и успокоиться, но и тут есть сложности.
Так называемая «мокрая» посадка гильзы, как на моторах ЗМЗ V8, не обеспечивает достаточной жесткости и не технологична, а «сухая» гильза, которую заливают в блок на этапе отливки или штамповки, обходится дорого. И в любом случае чугун ухудшает теплопередачу и тепловой зазор приходится оставлять большим из-за разного коэффициента расширения металлов. А новые требования к моторам заставляют искать способы уменьшения зазоров в цилиндрово-поршневой группе для усовершенствования работы «на холодную» и улучшения экологичности.
Газ-53 с двигателем ЗМЗ V8
Выход нашли сначала в нанесении на алюминий очень тонкого слоя особопрочного материала. Пример тому – покрытие по технологии Nikasil из сверхтвердого карбида никеля, наносимое гальваническим методом на алюминиевую гильзу цилиндра.
Технология была разработана в 60-е годы для роторно-поршневых моторов NSU и применялась на легендарных Ro-80 и на некоторых Porsche, а в 90-е годы пришла в массовое автомобилестроение. Но совсем ненадолго. Буквально за пять-шесть лет выпуска производители «разочаровались» в технологии. Формальным поводом стали случаи разрушения прочнейшего покрытия из-за химических проблем: например, при использовании высокосернистого топлива. Особенно часто сложности встречались в северных штатах США и в Канаде.
Отзвуки громкого скандала с никасилом дошли и до нас, но это как раз тот случай, когда проблема оказалась вовсе не технической – просто это очень дорогой способ, и у него «нашли» «недостаток». Хотя дело было скорее в низкой технологичности и высоких шансах на производственный брак при сложной процедуре. Забавно, что громкий отказ в массовом автомобилестроении от никасила никак не повлиял на его использование в мотоспорте и на заряженных гражданских мотоциклах: там он по-прежнему весьма популярен.
Но потерпев неудачу с никасилом, конструкторы не отчаялись и обратились к более технологичным аналогам. Вспомним, что чугун в моторах появился не просто так. На поверхности этого металла при обработке проявляются зерна графита, благодаря твердости которых чугунные цилиндры обладают высокой износостокостью. Если насытить алюминий кремнием выше определенного порога, то можно получить своеобразный «алюминиевый чугун» – заэвтектический сплав, в котором кремний будет содержаться в виде очень твердых износостойких зерен.
Достаточно лишь в блоке цилиндров, отлитого из заэвтектического сплава, специальным образом обработать поверхность цилиндра, «осадив» алюминий и оставив зерна кремния на поверхности. Технология Alusil или Silumal, основанная на этом принципе, а также гильзы по технологии Locasil, оказались крайне инновационны и недороги. Во многом этот способ даже дешевле «сухих» чугунных гильз в алюминиевом блоке. А о достоинствах цельноалюминиевого мотора я уже писал выше. И все же вал отказов моторов с алюсиловыми цилиндрами вполне обоснованно ставит под сомнение надежность самой технологии. Но в ней ли проблема?
В теории все отлично
Если ограничиться только широкоизвестными примерами «неудачных» моторов, то можно подумать, что именно в покрытии цилиндров и заключена суть проблемы. Но стоит приглядеться подробнее и обнаружится, что весьма удачных моторов с технологией Alusil хватает. Вот, например, серия двигателей M112-M113 от Mercedes, которые вполне обоснованно считаются крайне надежными, беспроблемными и неприхотливыми. И не беда, что тут гильзы цилиндров с алюсиловым покрытием – моторы проходят все 300-500 тысяч километров до проблем с поршневой группой, и известны примеры с куда большими пробегами – при нормальной эксплуатации износ в этом сопряжении практически отсутствует. В чем же разница между ними и признанными «неудачниками» серии М272-М273?
Двигатель Mercedes-Benz M113.M273
Алюминиевые блоки обеспечивают более стабильные характеристики поршневой группы при нагревании, позволяют почти без ущерба давать нагрузку на непрогретый мотор, а в итоге гарантируют лучшую экологичность и экономичность. И с ресурсом в теории тоже все хорошо: очень «скользкое» покрытие с минимальным коэффициентом трения, хорошими характеристиками удержания масляной пленки и высочайшей твердостью поверхностного слоя может работать очень-очень долго. Почти так же долго, как и очень дорогой Nikasil, и больше, чем чугун. Почему же на практике получается иначе?
Читайте также: С какого цилиндра выставляется зажигание
Разберем подробно на примере пары двигателей: надежного М112 и крайне неудачного М272 от одного производителя, почтеннейшего Mercedes-Benz. Оба двигателя ставили на целый ряд машин, от С- до S-классов и тяжелых внедорожников на протяжении более 10 лет. Самое время проанализировать накопленный опыт. Представлю героев этой статьи подробнее.
Хороший пример
Моторы серии М112-М113 – унифицированное семейство моторов V6 и V8, с углом развала блока 90 градусов, с рабочим объемом от 2,6 до 5,4 литра. Моторы V8 отличаются от V6 только наличием еще двух цилиндров и отсутствием балансирного вала в развале блока, в остальном они идентичны. На базе шести- и восьмицилиндровых моторов этих серий делали и компрессорные агрегаты для машин AMG.
Блок цилиндров из алюминиевого сплава, сухие гильзы из заэвтектического алюминиевого сплава. Кованый коленчатый вал, кованые шатуны, привод ГРМ двухрядной роликовой цепью, по одному респредвалу на ГБЦ (SOHC), три клапана на цилиндр: два впускных, один выпускной. Распределенный впрыск, система зажигания с двумя свечами на цилиндр. Фазовращателей нет. Впускной коллектор переменной длины. Простой термостат, привод вентилятора через вискомуфту, температура термостатирования 87 градусов. Охлаждение масла в водомасляном теплообменнике.
Двигатель Mercedes-Benz M112
Мощностные показатели более чем неплохие, особенно с учетом сравнительно небольшой массы моторов и малых размеров – ГБЦ очень компактные. Моторы V6 с рабочим объемом 3,7 литра без наддува выдают до 245 л. с. и 344 Нм, а V8 объемом 5,4 литра – все 367 л. с. и 530 Нм крутящего момента. Компрессорные варианты – так и вовсе вплоть до 650 л. с.
Основные недостатки конструкции давно известны. Сравнительно высокий расход масла на угар из-за малого натяга поршневых колец и быстрого износа сальников выпускных клапанов. Течи масла с теплообменника двигателя, а при загрязнении системы вентиляции картера и с крышек ГБЦ, а также других мест. Не очень высокое качество резиновых уплотнений, но сальники выпускных клапанов выходят из строя в основном из-за высокой температуры единственного выпускного клапана.
Трескаются выпускные коллекторы из-за конструктивных просчетов. Сложно менять свечи нижнего ряда, и этой процедурой пренебрегают при обслуживании, из-за чего моторы часто не выдают расчетные характеристики. Сравнительно мал ресурс катализаторов, а при прогрессировании расхода масла они выходят из строя очень быстро. Выпускной коллектор имеет изнашиваемые заслонки, которые теряют уплотнение к пробегу в 200-350 тысяч километров и иногда выходит из строя их привод, после чего мотор значительно теряет либо в тяге «на низах», либо «на верхах».
Если вовремя заменить сальники клапанов, не допускать перегревов, вовремя устранять течи теплообменника и менять прокладки, то мотор даже со стандартным интервалом обслуживания в 15 тысяч километров и «оригинальном» масле способен на более чем 200 тысяч пробега. При качественном обслуживании и при пробегах «за 300» он вполне бодро себя чувствует, не требуя замены поршневой группы и цепей. Задиры поршневой группы на M112/113 – часто следствие пренебрежения интервалами замены воздушного фильтра, плохого масла и перегревов.
Причем перегреть этот мотор достаточно сложно, если только ездить с неисправным термостатом или порванным ремнем привода вентилятора и помпы. Моторы эти имели экологический класс Euro 3 и Euro 4, выпускались с 1997 года и считались очень удачными. Но прогресс – штука неумолимая.
Плохой пример
В 2004 году на моделях C-, E- и S-класса появились новые двигатели серии M272/273 с примерно такими же характеристиками. Моторы серии M113 оставили только для «проходимца» G55. Чем же новые агрегаты были хуже и почему для владельцев они превратились в символ угасания качества марки Mercedes?
Серия двигателей M272-M273 тоже унифицирована, это V6 и V8 охватывает диапазон рабочего объема с 2,5 до 5,5 литра. На первый взгляд моторы мало изменились в сравнении с предшественниками, но тем не менее где-то кроются те изменения, которые сказались на надежности самым радикальным образом.
Под капотом Mercedes-Benz SLK 350 ‘2004–07
Блок цилиндров с тем же межцентровым расстоянием, тоже алюминиевый. Целиком отлит из заэвтектического алюминиевого сплава, гильз не имеет. Кованый коленчатый вал, кованые шатуны, привод ГРМ двухрядной роликовой цепью. Два верхних распредвала в каждой ГБЦ (DOHC), четыре клапана и одна свеча на цилиндр. Фазовращатели на впускных и выпускных валах. Впрыск распределенный на большинстве моделей, но есть и варианты с непосредственным (CGI) впрыском. Впускной коллектор переменной длины. Электровентиляторы системы охлаждения, управляемый термостат с электронным управлением. Температура термостатирования без учета нагревательного элемента уже 100 градусов. Охлаждение масла происходит в водомасляном теплообменнике.
Масса и габариты моторов выросли: весить агрегат стал в среднем больше на 10-15 кг и прибавил в ширину восемь см. Правда, мощность немного подросла. Самые объемные V6 3,5 литра выдают 272-316 л. с. в варианте с обычным и непосредственным впрыском, а 5,5 литра V8 все 388 л. с. Крутящий момент остался прежним, 350-360 Нм для V6 и 530 Нм для V8, но сместился в зону низких оборотов: если у М112 максимум достигался при 3 000-3 500 оборотах, то у М272 это уже 2 400-2 500 оборотов, что хорошо сказывается на динамике и экономичности.
Читайте также: Расточка блока цилиндров в перми шоссе космонавтов
Казалось бы, совершенно непринципиальные изменения. Но вот недостатков у нового мотора оказалось куда больше, чем преимуществ. Первые серии двигателей поразили «новшеством» в виде небывало низкого ресурса ГРМ. При пробегах всего в 60 тысяч километров могучая двухрядная цепь могла перескочить и загнуть клапаны мотора. Учитывая специфику V образных двигателей, часто это приводило к отрыву клапанов и полному разрушению агрегата.
Система непрерывного изменения фаз ГРМ оказалась капризной и дорогой: первые ее варианты имели ресурс опять же в пределах 80-100 тысяч километров и хорошую вероятность отказа при меньшем пробеге. Вина лежит в основном на неудачно выбранном материале цепи балансиров, которая быстро изнашивалась, ломала зубья, но сама цепь ГРМ и материалы звезд ГРМ тоже оказались излишне мягкими и изнашивались следом.
И впускной коллектор оказался с сюрпризом: если на моторах М112 выход его из строя был редкостью, то на М272 его замена выполняется уже в рамках обычного техобслуживания, примерно каждые 60 тысяч километров. Mercedes доработал конструкцию, но на это ушло немало времени. Недостатки ГРМ в основном устранили после 2007 года, когда стабильный ресурс цепи достиг примерно 120 тысяч километров, и система управления фазами тоже была доработана для достижения стабильного ресурса, сравнимого с ресурсом цепи. Впускной коллектор так и остался проблемным местом.
Нужно отметить, что все работы по ГРМ на этом двигателе очень дороги, а звезда балансирного вала меняется только вместе с самим валом, что требует снятия двигателя. Стоимость работ и материалов составляет не меньше 200 тысяч рублей. Ну а цена впускного коллектора в 60 тысяч рублей на фоне этого может считаться просто мелочью, тем более что «гаражный сервис» заслонки просто удаляет и без видимого вреда для мотора.
Еще одна проблема проявилась именно с поршневой группой этого двигателя: задиры цилиндров и связанный с ними высокий расход масла стали проявляться при совершенно смешных по мерседесовским меркам пробегам, порядка 80-100 тысяч километров, причем для моторов после 2007 года эта сложность могла вылезти раньше, чем заканчивался ресурс ГРМ.
Как следствие всех этих особенностей выросла стоимость эксплуатации и число отказов, в том числе требующих замены блока цилиндров или гильзовки. Но в общем-то и проблемы «предка» в лице М112 никуда не делись: слабые уплотнения, система вентиляции, теплообменник все также протекает и катализаторы умирают быстро. Правда, такой мотор масла практически не расходует, в отличие от предшественников, для которых пол-литра или литр на 15 тысяч километров пробега был в общем-то нормой, которая еще не говорила о начинающихся проблемах. Самое время взглянуть внимательнее, чем еще отличаются моторы и что может влиять на ресурс поршневой группы. И причем тут вообще алюсил.
Самое очевидное, что сказывается на условиях работы поршневых колец и сальников клапанов, – это изменение рабочей температуры. 87 градусов против 100 кажется не такой уж значительной прибавкой, но надо учесть еще и режим работы вентиляторов. Вискомуфта на М112 обеспечивает резкое снижение температуры сразу после открытия термостата при исправной работе и при заклинивании, а электровентиляторы на М272 срабатывают только при 107 градусах, даже если термостат открылся раньше. Побочным эффектом управляемого термостата является и резкое повышение вероятности детонации при ускорениях после пробок – мотор не успевает остыть быстро даже при снижении порога термостатирования под нагрузкой. А детонация для алюсилового мотора легко разрушает легкий слой поверхностного упрочнения.
Поршни, на первый взгляд, разнятся мало: почти одинаковая компрессионная высота, высота самого поршня различается меньше чем на 3 мм, но вот жаровой пояс у новых моторов М272 составляет всего 5 мм против 7,5 мм у М112. При прочих факторах это означает заметно худшие условия работы поршневых колец: они находятся в гораздо более горячей зоне. А еще маслофорсунки на моторе М272 имеют меньший расход масла, что явно не лучшим образом сказывается и на температуре поршня и, опять же, на условиях работы поршневых колец.
И снова отличия вроде бы невелики, но в сочетании с большим количеством частиц износа в картере мотора из-за износа ГРМ, вероятностью разгерметизации впускного коллектора или отрыва его заслонок, более быстрым износом сальников клапанов из-за повышенной температуры, ресурс поршневой группы сокращается в два-три раза, а число отказов и вовсе в несколько раз.
🎥 Видео
Блок Двигателя! Чугун или Алюминий! Никасил и АлюсилСкачать
Хром или Никасил? С каким покрытием выбирать цилиндр.Скачать
Джили тугелла, алюминевый двигатель с алюсиловым покрытием стенок цилиндровСкачать
Бюджетный способ лечения задировСкачать
ЗАДИРОВ в цилиндрах НЕ БУДЕТ если делать так...Скачать
РЕЗУЛЬТАТ РЕМОНТА ЦИЛИНДРА ОТ RUKAVKIN, НИКАСИЛЬ ЦИЛИНДРАСкачать
цилиндр чугун или сталь или никасиль или алюсилСкачать
Убираю задир - очистка никасилового покрытия - восстановление алюминиевого цилиндра после прихватаСкачать
Убрал задиры в блоке цилиндра ДагестанСкачать
НИКАСИЛ - КАК ИЗБЕЖАТЬ ЗАДИРОВ?! И ОТКУДА ОНИ БЕРУТСЯ? ///Скачать
Хон или зеркало? Научно-практический коментарийСкачать
Заглядываем в алюсиловые цилиндры неубиваемого V8 для Mercedes.Скачать
Плазменное напыление на гильзы цилиндров Ecoboost 3.5L F150 blocksprayСкачать
Aprilia 125 нанесение никасиля и хонинговка цилиндра размер 60мм.Скачать
Yamaha R6, ремонт никасилового блока цилиндров.Скачать
Никасил, алюсил, или все же чугун - выбор двигателя BMW, блоки цилиндров.Скачать
Задиры в цилиндре устранение никасил алюсил локасил Mercedes GL X164 присадка в моторное маслоСкачать
Технология никасил - гальваническое нанесение слоя никеляСкачать