Приводы регулирующей и запорной арматуры делятся по типу подводимой к ним энергии — электрические, пневматические, гидравлические. В инженерных системах зданий и сооружений используются, как правило, клапаны с электрическими приводами. Электрические приводы можно подразделить, в свою очередь, на многооборотные и однооборотные. Конкретный тип электропривода определяется конструктивной совместимостью арматуры и привода и необходимым усилием (в N или Nm), которое требуется для выполнения движения. Как правило, в каталогах на арматуру указывается тип привода или приводов на выбор, с которыми она работает.
Регулирующие шаровые клапаны и заслонки комплектуются только однооборотными электроприводами. При этом существует два вида управления такими приводами — импульсный и аналоговый. Импульсное управление осуществляется подачей коротких дискретных команд (импульсов), приводящих к включению однооборотного электропривода в ту или иную сторону на короткое время. При этом в седельном клапане двигатель поднимает или опускает шток клапана на несколько миллиметров, а в шаровом — поворачивает шар на несколько градусов, что приводит к увеличению или уменьшению через него протока регулирующей среды. Работа электроприводовзаслонок аналогична работе электроприводовшаровых клапанов.
Для осуществления аналогового управления в привод с однооборотным двигателем встраивается электронная плата. Плата принимает управляющий аналоговый сигнал (2(0). 10В или 4/20Ма) и управляет двигателем, имея от него обратную связь.
При выборе типа управления (импульсный или аналоговый) регулирующим клапаном или заслонкой необходимо учитывать следующее: приводы с импульсным управлением имеют, по сравнению с аналоговыми, несколько меньшую стоимость. Однако, при управлении таким приводом регулирующий контроллер не «знает» в каком положении в данный момент находится клапан или заслонка, что не позволяет его применять в тех слвучаях, когда по алгоритму работы требуется ограничивать ход клапана или заслонки, т.е. не закрывать или не открывать их полностью. Если точнее, то такой привод можно применить, но, только получая от него сигнал обратной связи (приводы с маркировкой «05») . Это также в свою очередь приводит к удорожанию, т.к. к стоимости добавляется, стоимость потенциометра, а также, как правило, необходимость наличия аналогового входа на контроллере. В итоге, стоимость применения привода с импульсным управлением и функцией обратной связи будет приблизительно равна стоимости аналогового привода.
При выборепривода следует обращать внимание на такую важную характеристику, как время хода штока для приводов седельных клапанов или время поворота для шаровых клапанов и воздушных заслонок. В каталогах приводится или время полного хода (поворота), т.е. время за которое привод переводит клапан из одного конечного состояния в другое, или время хода (сек.). Для приводов Neptronic седельных клапанов время полного хода составляет 60. 420 сек. Время полного поворота приводов шаровых клапанов и заслонок составляет около 20. 480 сек, а для «быстрых» приводов 1.5. 30 сек. Выбираемое время должно соответствовать скорости протекания технологического процесса. Для процессов, где регулируемые параметры значительно изменяются за короткий промежуток времени (например, процесс изменения потребления горячей воды в системе горячего водоснабжения) необходимо выбирать приводы, которые способны быстро восстановить заданное значение параметра. В этом случае предпочтительнее шаровыеклапаны в комплекте с «быстрыми»приводами, имеющими в маркировке символ «F/FF» и малым временем полного хода. Для «медленных» процессов (например, при автоматизации теплового пункта, где надо учитывать процесс изменения теплопотребления зданием) выбираются шаровые клапаны, регулирующие заслонки или седельные клапаны с приводами, имеющими наибольшее временя полного хода — т.н. «медленные приводы», имеющие в маркировке символ «S».
В конструкции ряда современныхприводов для запорной и регулирующей арматуры присутствует возвратная пружина. При подаче питания на такой привод запорной арматуры он становиться в одно крайнее положение (открытое или закрытое), а при прекращении питания пружиной возвращается в другое крайнее (безопасное), положение — закрывают или открывают арматуру. Приводыс возвратными пружинами наиболее целесообразно применять там, где аварийное отключение электропитания может привести к аварийным последствиям. Например: при работе в зимний период приточной вентиляционной установки с водяным воздухонагревателем система автоматического управления должна защищать воздухонагреватель от замораживания. При угрозе замораживания автоматика выдает ряд команд на оборудование установки, в том числе закрывает заслонку наружного воздуха. Такую команду можно подать и на заслонку без возвратной пружины, но это возможно только при наличии питания. Исходя из этих соображений, заслонки наружного воздуха всегда оборудуются приводами с возвратными пружинами, работающими на закрытие. Угроза размораживания системы существует также и при установке в автоматизированном тепловом пункте арматуры, оснащенной приводами без возвратной пружины. Только в этом случае привод призван открыть задвижку и полностью подать в систему теплоноситель в случае аварийного отключения электропитания. Возвратные пружины бывают 2-х типов — механические и электронные.
Читайте также: Пружина ямз клапана внутренняя
Электронная возвратная пружинаприводов Neptronic вмонтирована в плату управления приводом, имеет низкое энергопотребление и не требует обслуживания. Принцип работы следующий: энергия запасается в конденсаторе большой емкости и при необходимости высвобождается для приведения клапана в безопасное положение. При этом привод развивает номинальное усилие. Емкости конденсатора достаточно для полного открытия (закрытия) клапана. Простота конструкции и применяемые компоненты гарантируют практически 100% работу системы и неограниченный срок службы.
Важное замечание: одна и та же модель приводаNeptronic может работать с нормально открытыми и нормально закрытыми клапанами. Для изменения начального положения достаточно переключить соответствующий DIP -переключатель на панели управления привода.
- Трёхходовой смесительный клапан — управление, применение, особенности.
- Принцип работы трёхходового клапана
- Трёхходовой клапан с электроприводом
- Привод трёхходового клапана с импульсным управлением
- Привод трёхходового крана с аналоговым управлением
- Контроллер управления трёхходовым клапаном
- Регулирующий клапан – электропривод, МИМ или позиционер?
- 1. Клапаны с электроприводом и трёхпозиционным управлением
- 2. Клапаны с мембранным исполнительным механизмом (МИМ)
- Линейность
- Чувствительность
- Гистериз
- 3. Позиционер управления клапаном
- 4. Выводы
- Клапаны с электроприводом и управлением «больше меньше»
- Клапаны с МИМ и ЭПП
- Клапаны с позиционером
- 🎦 Видео
Видео:Как установить привод на клапан для автоматической вентиляции ИМВЕНТСкачать
Трёхходовой смесительный клапан — управление, применение, особенности.
Трёхходовой клапан (кран) — устройство смешения или разделения потоков рабочей среды (жидкости или газа). В быту чаще всего он используется в системах вентиляции, отопления, ГВС и тёплых полов. С помощью трёхходового крана можно плавно менять расход воды через теплообменник, регулируя тем самым температуру в системе.
Проще говоря, трёхходовой кран применяют тогда, когда нужно перераспределять поток рабочей среды, а не просто открывать или закрывать, как в случае с обычным краном. Это позволяет поддерживать постоянную циркуляцию в системе, улучшить теплосъём и оптимизировать работу отопительных приборов.
Видео:Привод для клапана пропорциональныйСкачать
Принцип работы трёхходового клапана
Трёхходовые клапаны бывают двух видов: смесительные и разделительные.
Как понятно из названия, первые смешивают два потока, а вторые, наоборот разделяют один поток на два. При этом они имеют схожий принцип работы: внутренний клапан перекрывает два отверстия в определённой пропорции. В этой же пропорции смешиваются или разделяются потоки.
Видео:Как проверить работу вентиляционного клапанаСкачать
Трёхходовой клапан с электроприводом
Для того чтобы управлять трёхходовым краном автоматически, на него устанавливают электропривод, который позволяет позволяет поворачивать кран на необходимый угол.
Сигналы управления формирует интеллектуальное устройство (контроллер или регулятор), примеры которых будут рассмотрены ниже.
Привод крана может управляться напряжением 220 В или 24 В.
По типу сигнала управления различают два вида приводов трёхходовых клапанов:
- привод с импульсным управлением
- привод с управлением аналоговым сигналом 0-10 В или 4-20 мА
Видео:Аналог ESBE. Клапаны, контроллеры и приводы Wester совместимы с автоматикой и арматурой ESBEСкачать
Привод трёхходового клапана с импульсным управлением
Этот тип привода управляется с помощью электрических импульсов разной длительности. Электронная плата привода имеет два дискретных входа, один из которых отвечает за закрытие, а другой — за открытие.
При подаче напряжения на один из дискретных входов клапан начинает открываться или закрываться( в зависимости от того, на какой вход подано напряжение), и делает это до тех пор, пока управляющее напряжение не будет «снято» со входа. Подача напряжения на другой вход приведёт к началу вращения привода в противоположном направлении.
Таким образом, чем дольше подавать управляющее напряжение на вход, тем на больший угол привод успеет повернуть клапан. Подача на дискретные входы импульсов различной длительности позволяет открывать (или закрывать) клапан «по чуть-чуть». Полное время закрытия/открытия клапанов сильно различается и может составлять от нескольких секунд до нескольких минут.
Приводы с импульсным управлением чаще всего имеют датчик положения, для определения текущей степени открытия клапана. Сигнал с этого датчика может использоваться в контроллере для улучшения качества управления или визуализации положения клапана.
Видео:Клапаны, Приводы BELIMO. Установка привода на клапан BELIMO.Скачать
Привод трёхходового крана с аналоговым управлением
Электроника такого привода «принимает» на вход унифицированный аналоговый сигнал. Это либо токовый сигнал 4-20 мА, либо сигнал напряжения 0-10 В, либо может управляться любым из этих сигналов.
Принцип управления в данном случае достаточно прост: чем больше ток управляющего сигнала в диапазоне от 4 до 20 мА — тем больше открыт клапан. При сигнале тока 4 мА, он будет полностью закрыт, а при 20 мА — полностью открыт.
С управляющим сигналом по напряжению (0-10 В) всё аналогично.
В таких приводах датчик положения не так важен, поскольку по значению поданного управляющего напряжения можно однозначно определить его положение.
Видео:Монтаж электропривода на клапан КВК (Арктос) - Как смонтировать?Скачать
Контроллер управления трёхходовым клапаном
Для того чтобы управлять трёхходовым клапаном по температуре в системе, используют интеллектуальное устройство (контроллер или регулятор).
Для примера рассмотрим систему отопления. В качестве регулятора возьмём «ТРМ12» компании «ОВЕН».
Датчик температуры измеряет температуру в помещении и передаёт показания на регулятор, который управляет трёхходовым клапаном.
Если клапан будет полностью открыт, вся горячая вода от котла потечёт через теплообменник (показано красным цветом на схеме) и мощность нагрева будет максимальной. При полностью закрытом клапане вода будет циркулировать по малому кругу (показан синим цветом) через теплообменник, постепенно остужаясь. При понижении температуры в помещении регулятор будет приоткрывать трёхходовой вентиль, подмешивая горячую воду от котла в поток теплоносителя, циркулирующий через радиатор.
В результате регулятор «подберёт» такое положение вентиля, при котором количество подмешиваемой горячей воды обеспечит заданную температуру в помещении.
ТРМ12 работает по принципу ПИД-регулятора (о нём можно почитать тут ). Пользователь задаёт необходимое значение температуры в помещении с управляющей панели прибора. По текущему значению температуры, полученному от датчика, и заданию пользователя контроллер вычисляет, на сколько нужно открыть трёхходовой кран, и посылает управляющие импульсы необходимой длительности.
Для управления приводом клапана с аналоговым входным сигналом ТРМ12 не подходит. Вместо него можно выбрать, например ТРМ10. Вот его функциональная схема:
Как видите, этот регулятор имеет универсальный аналоговый выход (о-10 В или 4-20 мА).
Читайте также: Термостатический клапан rv2 угловой ду15 нр вр sanext
Видео:Клапан вытяжной вентиляции с приводомСкачать
Регулирующий клапан – электропривод, МИМ или позиционер?
Многие задачи автоматизации технологических процессов в той или иной мере требуют плавного изменения параметров рабочей среды. Это может быть поддержание нужного расхода теплоносителя на входе в теплообменник, или заданного давления воздуха внутри рабочей камеры пневмоцилиндра для регулировки усилия прижима, или поддержание соотношения газ/воздух при подаче топлива в горелку котла и т. д. Эти и многие другие задачи требуют применения регулирующих клапанов для их решения.
Видео:Особенности работы нормально закрытых сервоприводовСкачать
1. Клапаны с электроприводом и трёхпозиционным управлением
Одним из наиболее распространённых типов регулирующих клапанов являются клапаны с электроприводом и трёхпозиционным управлением, который в народе часто называют «больше/меньше». Данный способ управления характеризуется наличием трёх состояний клапана: открывается (сигнал «больше»), закрывается (сигнал «меньше») и не изменяет состояния (оба сигнала: и «больше» и «меньше» отсутствуют).
Электроприводы с таким способом управления применяются как совместно с запорно-регулирующими клапанами (линейное перемещение рабочего органа), так и совместно с регулирующими шаровыми кранами или заслонками (поворот рабочего органа). В обои случаях принцип работы электропривода одинаковый: подача одного из сигналов «больше» или «меньше» приводит к вращению электромотора в различных направлениях, а редуктор преобразует это вращение в линейное (для клапанов) или поворотное (для кранов) движение. При этом необходимость обеспечения высокого выходного момента заставляет использовать редукторы с большим передаточным отношением, что приводит к уменьшению скорости работы привода.
Время полного хода регулирующих клапанов с электроприводом составляет, как правило, от нескольких десятков до нескольких сотен секунд. Для многих медленно протекающих процессов быстродействие не является критичным и на первый план при выборе выходят цена и общая надёжность конструкции. Примером таких процессов может служить задача поддержания температуры в контурах отопления или горячего водоснабжения в индивидуальных тепловых пунктах (ИТП).
Видео:Сервопривод для клапана, привод с датчиком для поддержания фиксированной температуры UNI-FITTСкачать
2. Клапаны с мембранным исполнительным механизмом (МИМ)
Использование клапанов с электроприводом и управлением «больше/меньше» требует применения специальных регуляторов. Однако, данные регуляторы не являются редкостью, а их настройка не вызывает больших трудностей, так что этот факт следует отнести скорее к особенностям таких клапанов, а не к их недостаткам.
Впрочем, некоторые процессы для качественного управления требуют быстродействующих клапанов со временем полного хода не более нескольких секунд. Примерами таких процессов могут служить пастеризационно-охладительные установки (ПОУ) или уже упоминаемый процесс поддержания оптимального соотношения газ/воздух. Для решения этих задач используют клапаны с пропорциональным способом управления и одними из наиболее распространённых клапанов такого типа являются клапаны с мембранным исполнительным механизмом (МИМ).
Рисунок 3 — ЭПП ASCO Sentronic LP
В качестве входного сигнала управления, определяющего положение рабочего органа клапана чаще всего выступает унифицированный пневматический сигнал 20…100 кПа. При этом для подключения к электронной системе автоматики используют специальные электропневмопреобразователи (ЭПП). С помощью этих устройств унифицированный электрический сигнал 4…20 мА или 0…10 В преобразуется в пневматический сигнал управления 20…100 кПа.
Клапаны с МИМ совместно с ЭПП имеют на порядок большее быстродействие по сравнению с клапанами с электроприводом, что позволяет обеспечивать большую точность в динамическом режиме работы. Однако, такой подход при построении системы управления несёт в себе одну скрытую угрозу.
Дело в том что в цепи управления присутствует преобразование без обратной связи (ЭПП ➝ МИМ ➝ процент открытия клапана) и на обоих этапах этого преобразования возможны нелинейности, вызывающие уменьшение динамической точности. Таким образом одна и та же величина сигнала управления генерируемая регулятором может приводить к различному проценту открытия клапана и, как следствие, к отличающемуся от ожидаемого воздействию на объект управления.
Рисунок 4 — Схема контура регулирования при ипользовании клапана с МИМ и ЭПП
Неточная передача управляющих воздействий на объект управления связана с естественными отклонениями реальных устройств от их идеального представления. Эти отклонения присущи любым устройствам, хотя разные модели разных производителей могут иметь различную величину данных отклонений. Применительно к пропорциональным клапанам отклонение реальных устройств от их идеальных моделей обычно характеризуют четырьмя параметрами: линейность, чувствительность, гистерезис и повторяемость.
Линейность
Характеризует отклонение реального положения рабочего органа клапана от расчётного, соответствующего текущему уровню входного сигнала. Идеальная зависимость между управляющим сигналом и положением рабочего органа клапана представляет из себя прямую линию. Однако, фактическое положение может отличаться от расчётного по ряду причин. Максимальное отклонение фактического положения от расчётного выражают в процентах и называют линейностью (или нелинейностью). На рисунке 5 характеристика идеального клапана показана чёрной линией, а реального зелёной. Для клапанов с трёхпозиционным управлением значение линейности не указывают, т. к. однозначная зависимость между сигналами управления и положением рабочего органа клапана отсутствует.
Чувствительность
Если придерживаться формального подхода, определяет минимально возможное перемещение рабочего органа клапана. Выражается в процентах от общего перемещения. Чем меньше значение чувствительности, тем более незначительные изменения управляющего сигнала может отработать регулирующий клапан. Однако, не следует забывать что частые перемещения рабочего органа на малые расстояния приводят к повышенному износу и сокращают срок службы клапана. Поэтому, чаще всего, чувствительность клапана обозначает максимально возможную точность остановки рабочего органа в требуемом положении, а для того что-бы избежать микроперемещений при работе клапана в устройстве управления Рисунок 6 – Чувствительность вводится зона нечувствительности, превышающая чувствительность клапана и предотвращающая повышенный износ.
Читайте также: Замена клапана серьезная операция
Гистериз
Под гистерезисом регулирующих клапанов понимают разность положений рабочего органа, которые он занимает при одной и той-же величине управляющего сигнала но при движении в разных направлениях – при закрытии и открытии. Наибольшее влияние на процесс регулирования гистерезис оказывает при изменении направления движения рабочего органа. Допустим, система управления открывает клапан. При этом рабочий орган движется по нижней кривой от точки 0 до точки 1. Если в этот момент требуется изменить направление движения, система управления уменьшает величину входного сигнала, однако, положение рабочего органа клапана не изменится до тех пор пока не будет достигнута точка 2.
Высококачественные клапаны имеют небольшой гистерезис, 1…2%, который не оказывает существенного влияния на процесс управления. Однако, гистерезис некоторых типов регулирующих клапанов может достигать 10…15%, что заставляет инженеров внедрять в систему управления дополнительные устройства или программные модули для компенсации влияния гистерезиса. В процессе эксплуатации, значение гистерезиса клапана может сильно увеличиваться вследствие износа. При критическом увеличении гистерезиса его называют люфтом.
Повторяемость это способность рабочего органа клапана занимать одинаковые положения при многократной подаче на него одинаковых входных сигналов. В отличии от измерительных приборов для клапанов значение повторяемости, обычно не является критичным, т. к. повторяемости почти любого современного клапана оказывается достаточно высокой чтобы не оказывать сколько-нибудь существенного влияния на процесс регулирования. Все эти отклонения возникают в разомкнутой части системы управления (ЭПП ➝ МИМ ➝ процент открытия клапана) и их качественная компенсация без введения обратной связи является сложным процессом, требующим применения нетрадиционных регуляторов и длительной настройки на этапе пусконаладочных работ.
В связи с высокой сложностью компенсации нелинейностей в цепи управления при использовании клапанов с МИМ и ЭПП от неё часто отказываются. При этом оценить точность системы управления в динамическом режиме работы становится практически невозможно и при построении системы приходится опираться на личный опыт проектировщиков, а представления о применимости тех или иных клапанов для решения поставленных задач формируются исходя из успехов (или неудач) уже реализованных проектов. Избежать неясностей при построении подобных систем управления позволяет введение в цепь управления обратной связи по положению штока клапана с формированием второго, стабилизирующего, контура. В качестве регулятора в этом контуре используется позиционер.
Рисунок 8 — Схема контура регулирования при спользовании клапана с позиционером
Видео:Автоматика и регулирующая арматура WesterСкачать
3. Позиционер управления клапаном
Это устройство которое полностью берёт на себя функцию управления клапаном. Примером может служить позиционер ASCO 60566318, который устанавливается на все регулирующие клапаны серий E290(резьбовой), S290(приварной) и T290(фланцевый). После установки позиционера на клапан запускается процедура инициализации, в процессе которой позиционер в автоматическом режиме собирает всю необходимую информацию о клапане и настраивает встроенный регулятор таким образом чтобы обеспечить оптимальное управление. После завершения инициализации из системы управления достаточно подать на позиционер пропорциональный сигнал с требуемым процентом открытия клапана, а позиционер приведёт клапан в нужное положение.
Рисунок 10 — Регулирующий клапан ASCO с позиционером
Использование клапанов с позиционером позволяет скомпенсировать нелинейности на этапах преобразования пропорционального электрического сигнала от регулятора в процент открытия клапана. Благодаря этому можно почти полностью отказаться от сложной процедуры ручной настройки регуляторов, управляющих пропорциональными клапанами.
Клапан с позиционером уже имеет в своём составе замкнутый контур управления с оптимально настроенным регулятором, среди прочего в автоматическом режиме компенсирующим гистерезис и нелинейность клапана. Таким образом время пусконаладочных работ сокращается до минимума, а расчёт точности упрощается и представляет из себя один параметр – зону нечувствительности встроенного в позиционер регулятора.
Для регулирующих клапанов ASCO с позиционером заводское значение зоны нечувствительности составляет 1%. Инженерам-проектировщикам следует, однако, помнить что даже такие высокие показатели точности не гарантируют высококачественного регулирования в случае неправильно выбранного регулирующего клапана. Так, например, часто встречающейся ошибкой при проектировании систем является выбор регулирующего клапана по диаметру трубопровода на котором он устанавливается.
При таком подходе реальный расход среды через регулирующий клапан может оказаться существенно ниже номинального расхода, а значит и показатели качества процесса регулирования ухудшатся в несколько раз. Поэтому при высоких требованиях к точности регулирования следует уделить особое внимание выбору клапана с коэффициентом расхода Kv соответствующим проектируемой системе.
Видео:Делаем трехпозиционный ПИД-регулятор из аналоговогоСкачать
4. Выводы
На современном рынке технических средств автоматизации представлено большое количество различных регулирующих клапанов. Наиболее распространёнными являются три типа: клапаны с электроприводом с трёхпозиционным способом управления («больше/меньше»), клапаны с МИМ и ЭПП, клапаны с позиционером. Преимущества и недостатки каждого из них можно резюмировать следующим образом.
Клапаны с электроприводом и управлением «больше меньше»
- управление дискретными сигналами
- простой и понятный принцип работы + цена
- требуют использования специальных регуляторов
- низкая скорость работы
- ограниченная применимость
- высокое энергопотребление (вызывает сложности при построении систем с автономным резервированием питания)
Клапаны с МИМ и ЭПП
- высокое быстродействие
- низкое энергопотребление
- расширенная сфера применения
- управление пропорциональным сигналом
- чрезвычайно высокая сложность компенсации нелинейностей в контуре управления
- сложность оценки точности, особенно в динамических режимах работы
- требует для работы сжатый воздух
Клапаны с позиционером
- высокое быстродействие
- низкое энергопотребление
- автоматическая компенсация нелинейностей
- лёгкое построение двухконтурной системы управления с минимумом трудозатрат
- наиболее широкая сфера технологических применений
- управление пропорциональным сигналом
- требует для работы сжатый воздух
Инженер ООО «КИП-Сервис»
Быков А.Ю.
🎦 Видео
ДЕСМОДРОМНЫЙ привод клапановСкачать
Электропривод противопожарного клапана MAKO BLF230MСкачать
Как сделать ПРИВОД для вентиляционного клапана СВОИМИ РУКАМИ.Скачать
Как правильно подобрать привод регулирующего клапана Johnson ControlsСкачать
Привод клапанов и зазор в механизме ГРМ (какой зазор нужен и почему?)Скачать
Электротермический привод для клапанов siemens sta73b/00 обзорСкачать
🌕 СЕРВОПРИВОД ТЕПЛОГО ПОЛА! В чем опасность нормально закрытого сервопривода.Скачать
Привод для клапана трёхточечныйСкачать
Привод газа на двигателя Хонда Gx 160 200см куб и их аналоги Садко, Кентавр, ВеймаСкачать