Антипомпажный клапан компрессора гпа

Авто помощник

Помпаж представляет собой срыв потока газа в компрессоре с потерей динамической устойчивости. Возникающие при этом колебания расхода и давления газа могут привести к разрушению оборудования. Явление помпажа возникает, когда давление на выходе нагнетателя высокое, а расход газа через него – низкий. Для защиты центробежного нагнетателя от помпажа используется перепуск газа с выхода компрессора на его вход в количестве, необходимом для избежания помпажа. В системе антипомпажного регулирования и защиты ДКС «Западный Шатлык» используется регулирующий клапан фирмы Mokveld (Голландия).

Запас газодинамической устойчивости нагнетателя может быть оценен по положению его рабочей точки в координатах расход – степень сжатия. В этих же координатах изображается граница помпажа – линия, при нахождении рабочей точки левее которой (т.е. при низких расходах), происходит помпаж. Правее линии помпажа на заданном расстоянии, характеризующем запас по помпажу, находится линия регулирования – линия, левее которой рабочая точка находиться не должна.

Задача антипомпажного регулирования и антипомпажной защиты включает в себя поддержание запаса по помпажу не ниже заданного, обнаружение помпажа и вывод нагнетателя из зоны помпажа. Поддержание запаса по помпажу достигается путем своевременного частичного открытия антипомпажного клапана при достижении рабочей точкой линии регулирования или быстром приближении к ней. При этом рабочая точка, если она достигает линии регулирования, удерживается на ней. Степень открытия антипомпажного клапана определяется контуром антипомпажного регулирования. Возможно применение нелинейных законов регулирования.

Для устранения помпажа используется частичное или полное открытие антипомпажного клапана. Затем происходит плавное закрытие регулирующего клапана и вывод рабочей точки нагнетателя на линию регулирования. Если в течение заданного времени устранить помпаж при помощи перепуска газа не удается, система антипомпажной защиты выдает в САУ ГПА команду аварийного останова агрегата.

Общестанционный регулятор обеспечивает поддержание заданного давления на выходе КС как при работе одного ГПА, так и при совместной работе двух ГПА. Выходными сигналами общестанционного регулятора являются уставки частоты вращения для регуляторов подачи топлива работающих ГПА и открытие байпасного клапана КС.

Допустимое отклонение характеристик приводов и нагнетателей не позволяет использовать для всех работающих агрегатов одну и ту же уставку частоты вращения нагнетателя, т.к. нагрузка на них в этом случае будет не равномерна. Задача коррекции уставок индивидуальных регуляторов в зависимости от фактического состояния отдельных агрегатов и их режимов работы представляет значительный практический интерес. Она тесно связана с оптимизацией работы КС в целом. В качестве критерия оптимальности в рассматриваемой системе принят запас по помпажу, равный для всех нагнетателей.

Система управления ДКС «Западный Шатлык» построена по модульному принципу.

САУ ГПА реализованы на основе общепромышленного свободно программируемого контроллера. Применение общепромышленного оборудования позволило изготовить общестанционную и агрегатную автоматику на унифицированной технической базе, использовать общее инструментальное программное обеспечение для программирования всех контроллеров системы управления КС, шире использовать серийно выпускаемые SCADA – системы, сократить количество и ассортимент ЗИП.

ДКС «Западный Шатлык» введена в эксплуатацию в начале 2004 г. Аналогичная система управления внедрена на КС «Астара» (Азеригаз, Азербайджан). Отличие ее заключается в том, что на данном объекте используются двухсекционные нагнетатели.

Видео:Антипомпажное регулирование 02 декабряСкачать

Антипомпажное регулирование 02 декабря

Устройство и принцип работы системы антипомпажного регулирования центробежного нагнетателя с использованием регулирующего клапана.

Управление регулирующим клапаном осуществляется специальной системой антипомпажного регулирования, включающей в себя антипомпажный клапан с силовым приводом и регулятор (см. рисунок 10).

В качестве силового привода для антипомпажных клапанов на магистральных газопроводах применяется пневматический привод (высокое быстродействие, большие мощности, доступная пневматическая энергия), но для его надежной работы требуется газ или воздух с высокой степенью очистки и осушки.

Антипомпажный клапан компрессора гпа

Рисунок 10. Структурная схема системы антипомпажного регулирования центробежного нагнетателя.

Поскольку работа центробежного нагнетателя непосредственно в критической точке, находящейся на границе помпажа, недопустима из-за опасности попадания нагнетателя в помпажный режим при малейшем снижении расхода газа, то в системах антипомпажного регулирования в качестве критерия для срабатывания системы и открытия антипомпажного клапана используется степень приближения рабочей точке не к границе помпажа, а к так линии безопасных режимов работы, которая имеет 5…10 %-ый запас по помпажу.

Для определение границы помпажа и установления линии безопасных режимов работы в системах АПР применяются следующие методы:

В основном, центробежные нагнетатели оснащаются системами антипомпажной защиты на основе параметрических методов. Принцип действия таких систем основан на том, что у центробежного нагнетателя на газодинамических характеристиках в координатах расход по условиям всасывания-степень повышения давления при некоторой постоянной скорости вращения существует единственная точка, соответствующая началу помпажа (как было рассмотрено выше).

Читайте также: Обратный клапан 2108 1156010 дааз

Для определения приближения к этой точке (границе помпажа) используется измерение расхода газа через нагнетатель. Измерение расхода газа производится с помощью сужающего устройства (определение расхода газа по перепаду на конфузоре). Наилучшим местом установки сужающего устройства является линия всасывания, но его установка на всасывании приводит к увеличению потерь во входном устройстве, что значительно снижает общий К.П.Д. нагнетателя. Поэтому сужающее устройство устанавливают в линии нагнетания с пересчетом расхода на условия всасывания. Требования к длинам прямых участков при монтаже сужающего устройства, как правило, не соблюдаются, поэтому измерение расхода производится с повышенной погрешностью (погрешность измерения расхода в зоне помпажа может достигать 5%).

Основными недостатками параметрических систем антипомпажной защиты являются:
— в систему зачастую закладываются характеристики не соответствующие реальным параметрам работы;

— процессы во времени протекают быстротечно, поэтому необходимо предусматривать запас по устойчивости на время реакции системы, что уменьшает эффективность использования нагнетателя;

— неверное определение уставки приводит или к недостаточному запасу устойчивости, или к еще большему уменьшению эффективности использования нагнетателя.

Перспективным направлением является создание систем АПР на основе признаковых методов распознавания границы помпажа. Данные методы основаны на обнаружении особенностей течения потока газа в проточной части нагнетателя, возникающие при нерасчетных режимах. Для этого в проточную часть устанавливают специальные датчики.

Опытное применение признаковых способов обнаружения помпажа началось с средины прошлого века. Не смотря на множество патентов они не получили широкого распространения и применяются как дополнительная мера защиты совместно с параметрическими методами.

Так, долгое время определение момента начала вращающегося срыва при использовании аналоговых средств не представлялось возможным так, как уровень полезного сигнала соизмерим с уровнем шумов, к которым еще добавляются внешние помехи. В настоящее время, в связи с развитием средств измерения и микропроцессорных контроллеров созданы все предпосылки для создания признаковых систем распознавания границы помпажа.

Видео:Компоненты антипомпажного регулирующего клапана FisherСкачать

Компоненты антипомпажного регулирующего клапана Fisher

Все о транспорте газа

Управление турбокомпрессорным оборудованием является важной частью общей архитектуры автоматизированных систем управления технологическим процессом (АСУТП), где работы турбинных агрегатов и компрессоров имеют критическое значение. Области применения турбокомпрессорного оборудования: добыча нефти и газа на шельфе, транспортировка, производство сжиженного природного газа, этилена, полипропилена, метанола, аммиака, азотной кислоты, установки глубокой переработки нефти: каталитического крекинга, гидроочистки, алкилирования и т. п.

Точность, скорость и качество управления влияют на эффективность и безопасность технологического процесса. Например, вынужденный простой турбины или компрессоры приводит к незапланированному простою целой установки и огромным экономическим потерям: так, простой установки каталитического крекинга может обходиться крупному нефтеперерабатывающему заводу (НПЗ) более 1 млн долларов США в день [2, с. 176].

В статье раскроем одну из очень важных подзадач TMC, а именно — антипомпажное управления компрессорами. Помпаж — это нестабильная работа компрессора, характеризующаяся резкими колебаниями напора и расхода. Результатом помпажа является частичное или полное реверсирование потока среды через компрессор. Назовем последствия помпажа: остановка технологического процесса в результате реверсирования расхода; повреждение уплотнений компрессора, приводящее к снижению его эффективности; многократные помпажи могут вызвать катастрофические разрушения элементов компрессора, приводящие к частичной или полной потере производительности.

Подразделение Triconex компании Schneider Electric имеет более 30-летний опыт внедрения подобного рода систем. В начале 60-х годов ХХ в. пионерами внедрения антипомпажного управления, основанного на регулировании положения рабочей точки относительно границы помпажа, не зависящей от свойства газа, были специалисты компании Foxboro®. Линия помпажа строилась на координатах АР к h, где АР — дифференциальное давление нагнетания-всасывания в компрессоре, h — перепад давления в СУ на всасывании. Уставка контроллера представлялась в виде одной линии, расположенной под безопасным углом, с отступом в рабочую зону относительно границы помпажа.

Алгоритм реализовывался на одноконтурном пневматическом контроллере. Решение, впервые опробованное компанией Foxboro, оставалось промышленным стандартом на протяжении двух десятилетий и использовалось при относительно постоянном давлении на всасывании.

Такой алгоритм и аппаратное обеспечение были достаточно эффективны для защиты компрессора и значительно расширили диапазон рабочих режимов в сравнении с простым контроллером минимального расхода.

Видео:Центробежный компрессорСкачать

Центробежный компрессор

Антипомпажные регулирующие клапаны

Защитите компрессор от помпажа и повысьте его стабильность с помощью оптимизированной антипомпажной системы клапанов Fisher

Видео:ОТ ПРОВЕРКИ ДО НАЛАДКИ / Помпажное тестирование компрессора ДКС на шестом газовом промысле ЯмбургаСкачать

ОТ ПРОВЕРКИ ДО НАЛАДКИ / Помпажное тестирование компрессора ДКС на шестом газовом промысле Ямбурга

Что вызывает помпаж компрессора?

Под помпажем понимается рабочая точка, в которой достигаются максимальный напор центробежного компрессора и пределы минимального расхода. Когда давление в камере за компрессором выше, чем давление на выходе из компрессора, среда стремится повернуть вспять или даже течь обратно в компрессор. Как следствие, давление в камере будет уменьшаться, давление на входе будет увеличиваться, и поток снова изменит направление. В результате компрессор теряет способность поддерживать максимальный напор при возникновении помпажа, и вся система теряет стабильность. Помпаж может также привести к перегреву компрессора до точки, при которой превышена максимально допустимая температура устройства, или привести к повреждению упорного подшипника за счет возвратно-поступательного смещения ротора между активной и неактивной сторонами.​​​​​​​

Читайте также: Топливная рейка ваз 2114 8 клапанов

Видео:27) От чего бывает помпаж - почти все случаи, свои можете коментировать буду рад этомуСкачать

27) От чего бывает помпаж - почти все случаи, свои можете коментировать буду рад этому

Преимущества антипомпажных регулирующих клапанов

Видео:Многоступенчатый центробежный компрессорСкачать

Многоступенчатый центробежный компрессор

Обзор

Эти клапаны обнаруживают, когда степень сжатия среды приближается к помпажу, и принимают соответствующие меры для изменения движения рабочей точки в направлении границы помпажа. Клапан уменьшает давление в камере и увеличивает поток через компрессор, что стабилизирует рабочие условия. Обычно это достигается путем открытия регулирующего клапана в линии рециркуляции и возврата нагнетаемого газа на вход компрессора через систему охлаждения на входе. Результирующее увеличение объемного расхода на входе в компрессор отодвигает рабочую точку от помпажа.

Эти сборки обычно состоят из регулирующего клапана, привода, цифрового контроллера клапана и других принадлежностей, таких как пневматические бустеры.

Видео:Как работает центробежный газовый компрессорСкачать

Как работает центробежный газовый компрессор

Конструкция антипомпажного клапана.

Наибольшее распространение в ОАО «Газпром» получили системы антипомпажного регулирования, в которых в качестве исполнительного органа применяется запорно-регулирующий клапан с аналоговым управлением фирмы «Mokveld Valves». Конструкция основана на принципе осевого течения потока. Осевой поток формируется в прямолинейном симметричном проточном контуре между внутренним и наружным корпусами клапана. Такая конструкция обеспечивает наибольшую пропускную способность по сравнению с регулирующими клапанами другого типа, исключает вихревые течения и изменения направления течения потока газа, что уменьшает потери, вибрацию, уровень шума и эрозионный износ элементов конструкции.

Клапан фирмы «Mokveld Valves» состоит из следующих узлов: узла клапана, силового пневмопривода клапана, приборной части (комплекта приборов), обеспечивающей работу клапана в автоматическом режиме и гидравлической системы дублирующего ручного управления клапаном (см. рисунок 11).

Антипомпажный клапан компрессора гпа

1 – силовой пневмоцилиндр; 2- силовой гидроцилиндр; 3- приборный шкаф; 4 – узел клапана; 5 — ресивер.

а) – основные узлы клапана; б) – внешний вид клапана для надземной установки.

Рисунок 11. Антипомпажный клапан фирмы «Mokveld Valves».

Узел клапана представляет собой устройство поршневого типа (см. рисунок 12). Основными элементами узла клапана являются: наружный и внутренний корпус, поршень со штоком, шток клапана и сепаратор с выполненными в нем радиальными отверстиями.

Антипомпажный клапан компрессора гпа

1- наружный корпус, 2 — внутренний корпус, 3 — поршень, 4 — шток поршня,

5 — шток (шпиндель) клапана, 6 – сепаратор.

а) – клапан в открытом положении; б) – клапан в закрытом положении.

Поршень поступательно перемещается в сепараторе вдоль оси клапана (см. рисунок 13). При своем движении поршень изменяет площадь проходного сечения отверстий сепаратора. Соответствующим выбором конструкционных материалов поршня и сепаратора предотвращается их быстрый эрозионный износ и обеспечивается длительная надежная работа клапана даже после продолжительного периода эксплуатации в режиме высокой степени дросселирования.

Поршень клапана уравновешивается по давлению. Это обеспечивается за счет свободного прохода рабочей среды под поршень и во внутренний корпус, что создает равнодействующие усилия на подвижные части клапана. Такая конструкция позволяет даже для клапанов большого размера при большом действующем перепаде давлений прикладывать незначительное усилие для его привода, а также обеспечивает высокую скорость срабатывания клапана.

Полное перекрытие потока осуществляется передней кромкой поршня.

Антипомпажный клапан компрессора гпа

а) – клапан в открытом положении; б) – клапан в закрытом положении.

Рисунок 13. Воздействие давления рабочей среды на элементы конструкции клапана.

Перемещение поршня осуществляется при помощи зубчатой реечной передачи, состоящей из размещенных под углом 90 0 взаимоскользящих зубчатых реек с наклонными зубьями, выполненными на штоках поршня и шпинделя (см. рисунок 14). Зубчатая передача защищена от воздействия рабочей среды двойными уплотнениями, установленными на штоках. Полость, в которой работает зубчатая передача, заполнена консистентной смазкой.

1 – поршень, 2 – шток поршня, 3 – шпиндель клапана.

Рисунок 14. Узел реечной передачи

Привод клапана нормально открытый, осуществляется при помощи силового пневмоцилиндра одностороннего действия, который устанавливается непосредственно на фланце корпуса узла клапана (см. рисунок 15). В клапанах, предназначенных для подземной установки, пневмопривод монтируется на удлинителе.

Шпиндель узла клапана соединяется со штоком пневопривода соединительной муфтой, которая расположена в нижней части пневмопривода. При подаче давления в полость над поршнем штока пневмопривода через соединительную муфту передает поступательное движение на шпиндель и далее посредством зубчатой реечной передачи на поршень узла клапана. Возвратное поступательное движение обеспечивается силой упругости пружин.

1– силовой поршень, 2 – шток силового поршня, 3 – корпус привода, 4 – пружины, 5 – ограничительный упор, 6 – ресивер, 7 – силовой гидроцилиндр.

Рисунок 15. Подпружиненный пневмопривод одностороннего действия.

Система управления антипомпажным клапаном.

Управление направлением и скоростью движения антипомпажного клапана осуществляет пневматическая система (см. рисунок 16), Входным сигналом для пневматической системы управления являются электрические импульсы, поступающие от системы управления газоперекачивающим агрегатом. Рабочим телом в системе управления является природный газ. Газ очищается от механических примесей в фильтре высокого давления Ф1 и поступает в редуктор высокого давления РД1, где осуществляется понижение давления (до величины 0,6…1,2 МПа). Из редуктора газ поступает в ресивер РС.

Читайте также: Переливной клапан это в бурении

Из ресивера газ поступает в трех направлениях:

§ на предохранительный клапан ПК. Предохранительный клапан предназначен для защиты ресивера от повышения в нем давления в случае отказа редуктора РД1.

§ на редукторы среднего и низкого давления РД2 и РД3 с фильтрами Ф2 и Ф3. Редуктор РД1 понижает давление (до 0,4…0,8 МПа) и подает его в качестве рабочего на позиционер ПЗ. Редуктор РД2 понижает давление (до 0,14 МПа) и подает его на электропневмопреобразователь ЭПП. В электропневмопреобразователь поступает командный электрический сигнал от антипомпажного регулятора газоперекачивающего агрегата. В зависимости от величины командного электрического сигнала электропневмопреобразователь формирует пневматический импульс, поступающий в качестве управляющего сигнала в позиционер. Позиционер, в зависимости от поступающего в него управляющего сигнала от электропневмопреобразователя и информации о фактическом положении регулирующего клапана обеспечивает формирование низкорасходного управляющего пневматического сигнала, поступающего в бустер БУ. Положение регулирующего клапана непрерывно отслеживается позиционером с помощью рычажного элемента обратной связи.

§ на бустер БУ. Бустер выполняет функцию пневматического усилителя, т.е. преобразует низкорасходный управляющий пневматический сигнал, поступающий в него от позиционера, в высокорасходный выходной пневматический сигнал, поступающий от бустера в пневмопривод ПП.

Для регулирования времени открытия и закрытия клапана подача ипульсного газа к пневмоприводу осуществляется через регулируемый дроссель ДР. Контроль крайних положений клапана осуществляется двумя концевыми выключателями ВК1 и ВК2, которые выдают соответствующие сигналы в противопомажный регулятор газоперекачивающего агрегата.

При получении командного электрического сигнала на закрытие срабатывает электропневмопреобразователь и выдает пневматический импульс в позиционер. Позиционер формирует низкорасходный управляющий пневматический сигнал, который поступает в бустер. Последний перепускает большой объем газа из ресивера в пневмопривод, поршень которого под действием силы от давления газа опускаться вниз и через зубчатую реечную передачу перемещает поршень клапана на закрытие.

При уменьшении командного электрического сигнала уменьшается величина пневматического импульса, вырабатываемого электропневмопреобразователем, и соответственно, величина низкорасходного управляющего пневматического сигнала, поступающего от позиционера в бустер. Последний перекрывает поток газа из ресивера в пневмопривод. Поршень пневмопривода под действием силы упругости пружин поднимается вверх и через зубчатую реечную передачу перемещает поршень клапана на открытие. Газ из силовой полости пневмопривода через бустер и позиционер сбрасывается в атмосферу.

Закрытие и открытие регулирующего клапана происходит пропорционально величине командного электрического сигнала.

С целью защиты элементов системы пневматического управления от попадания капельной влаги и образования гидратов в ней устанавливаются электроподогреватели и ленточные нагревательные элементы НЭ1 и НЭ2 с автоматическим ограничителем теплопроводности.

Антипомпажный клапан компрессора гпа

Ф1,Ф2,Ф3 – фильтр; РД1,РД2,РД3 – редуктор; РС-ресивер; ПК – предохранительный клапан; БУ – бустер; ПЗ – позиционер; ЭП – электропневмопреобразователь; ДР – регулируемый дроссель; ПП – пневмопривод; ГЦ – силовой гидроцилиндр; ГБ – гидроблок; ВК1,ВК2 – концевой выключатель; К – регулирующий клапан; НЭ1,НЭ2 – нагревательный элемент; КК – клеммная коробка; КБС – клапан быстрого сброса давления.

Рисунок 16. Принципиальная схема пневматической системы управления клапаном

В случае неисправности пневмопривода, либо недостаточном давлении газа, возможно ручное управление клапаном при помощи дублирующей системы гидроуправления. Гидравлическая система также выполняет функцию гидродемпфера при автоматическом режиме работы пневомпривода.

Гидросистема включает в себя силовой гидроцилиндр, размещенный на штоке пневмопривода, и гидравлический блок со встроенным ручным насосом и гидроаккумулятором. Гидравлический блок монтируется на установочной плите корпуса пневмопривода.

В корпусе гидроблока (см. рисунок 17) размещаются: переключатель режимов работы (переключающий золотник) 1, ручной насос 3 с двумя обратными клапанами 2 и 4 и предохранительный клапан 5.

При автоматическом режиме работе пневмопривода переключающий золотник 1 устанавливается в положении открыто и гидрожидкость может свободно перетекать из одной полости силового гидроцилиндра в другую, а гидросистема выполняет роль гидравлического демпфера.

В аварийных ситуациях переключающий золотник 1 устанавливается в положение закрыто. При этом гидрожидкость с помощью ручного насоса перекачивается из полости под поршнем силового гидроцилиндра в полость над поршнем, что приводит к перемещению поршня гироцилиндра и связанного с ним штока пневмопривода на закрытие клапана. При увеличении давления в линии нагнетания ручного насоса свыше 21 МПа срабатывает предохранительный клапан и перепускает часть гирожидкости с выхода насоса на вход.

Для перемещения поршня в обратном направлении необходимо вернуть переключающий золотник 1 в положение закрыто. Под действием силы упругости пружин пневмопривода гидрожидкость будет выдавливаться из полости над поршнем силового гидроцилиндра в полость под поршнем, а клапан переместится в положение «открыто».

1 – переключатель режимов работы, 2,4 – обратные клапаны, 3 – ручной гидронасос, 5 — предохранительный клапан, 6 – гидроаккумулятор, 7 – дроссель.

Рисунок 17. Принципиальная схема гидравлической системы клапана

Комплект приборов системы управления антипомпажным клапаном размещается в двух приборных шкафах.

Антипомпажный клапан компрессора гпа

Рисунок 18. Приборная часть антипомпажного клапана типа RZD фирмы «Mokveld Valves».

💥 Видео

Компьютерный VR-тренажёр «Подготовка к пуску ГПА-32 «Ладога»Скачать

Компьютерный VR-тренажёр «Подготовка к пуску ГПА-32 «Ладога»

Профессия-газовик. Машинист технологических компрессоровСкачать

Профессия-газовик. Машинист технологических компрессоров

Новая глава в развитии мастерскойСкачать

Новая глава в развитии мастерской

Автоматизация транспорта газаСкачать

Автоматизация транспорта газа

Аэрационная колонна, компрессор AIRPUMP AP2 Из чего состоит и для чего нужнаСкачать

Аэрационная колонна, компрессор AIRPUMP AP2  Из чего состоит и для чего нужна

Помпаж ЦБНСкачать

Помпаж ЦБН

Устройство и принцип работы регулирующего клапана Моквелд (Mokveld)Скачать

Устройство и принцип работы регулирующего клапана Моквелд (Mokveld)

Рабочий процесс в осевой ступени турбиныСкачать

Рабочий процесс в осевой ступени турбины

Компрессор СО-7Б. Установка автоматики. Нужен ли байпас ??Скачать

Компрессор СО-7Б.  Установка автоматики. Нужен ли байпас ??

Редуктор давления для компрессора или регулятор давления поршневого компрессораСкачать

Редуктор давления для компрессора или регулятор давления поршневого компрессора

Замена сменной проточной части на ГПА ЯмсовеяСкачать

Замена сменной проточной части на ГПА Ямсовея

Самый надёжный обратный клапан на компрессорСкачать

Самый надёжный обратный клапан на компрессор

Автоматика и апгрейд, обратный клапан компрессора со 7бСкачать

Автоматика и апгрейд, обратный клапан компрессора со 7б
Поделиться или сохранить к себе:
Технарь знаток