Архитектура или разрядность шины

Шину данных образуют линии, служащие для передачи данных между отдельными структурными группами ПК. Исходным пунктом линий данных является центральный процессор. Он определяет разрядность шины данных, т.е. число линий, по которым передаются данные. Чем выше разрядность шины данных, тем больший объем данных можно передать по ней за некоторый определенный промежуток времени и тем выше быстродействие компьютера.

В первых ПК использовался процессор Intel 8088. Этот 16-разрядный процессор имел всего лишь 8 внешних линий данных (этим объясняется его низкая стоимость). Для внутренних операций было задействовано 16 линий данных, благодаря чему процессор мог одновременно обрабатывать два восьмиразрядных числа. Но на внешнем уровне к нему присоединялась дешевая восьмиразрядная шина данных. Эти 8 линий обеспечивали связь со всеми микросхемами на системной плате, выполняющими функции обработки данных, и всеми платами расширения, установленными в гнездах. Таким образом осуществлялась передача данных между платами расширения и процессором.

Современные процессоры допускают внешнее подключение большего числа линий данных: процессор 80286 — 16 линий данных, процессоры 80386 DX и 80486 DX — 32 линии, а процессор Pentium — 64 линии данных.

Адресная шина. Разрядность шины

Другая группа линий образует адресную шину. Эта шина используется для адресации. Каждая ячейка памяти и устройство ввода-вывода компьютера имеет свой собственный адрес.

При считывании или записи данных процессор должен сообщать, по какому адресу он желает прочитать или записать данные, для чего необходимо указать этот адрес.

В отличие от шины данных шина адреса является однонаправленной.

Разрядность адресной шины определяет максимальное число адресов, по которым может обратиться процессор, т. е. число линий в адресной шине показывает, каким объемом памяти может управлять процессор. Учитывая, что одна адресная линия обеспечивает представление одного разряда двоичного числа, формулу для максимального объема адресуемой памяти можно записать в следующем виде:

максимальное число адресов = 2n,

где n — разрядность адресной шины.

Процессор 8088 имел 20 адресных линий, что в соответствии с приведенной формулой обеспечивало адресацию памяти объемом:

220 =1 048 576 байт = 1024 Кбайт = 1 Мбайт.

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Это тот самый предельный объем памяти, который все еще имеет силу в операционной системе DOS.

Совсем иная ситуация с процессором 80286. Он имеет 24 адресных линии и поэтому в состоянии управлять памятью объемом:

224= 16 777 216 байт =16 Мбайт.

Для обеспечения связи с микросхемами памяти число адресных линий процессора должно равняться числу адресных линий на системной плате.

Процессоры 80386, 80486 и Pentium имеют 32 адресных линии, что обеспечивает адресацию свыше 4 млрд. ячеек памяти. На системной плате с такими процессорами должно быть 32 линии, обеспечивающие обмен адресами между центральным процессором и всеми важными периферийными микросхемами.

Линии шины управления на системной плате служат для управления различными компонентами ПК. По выполняемой ими функции их можно сравнить с переводной стрелкой на железнодорожных путях.

С помощью небольшого числа линий шина управления обеспечивает такое функционирование системы, чтобы в каждый данный момент времени только одна структурная единица ПК пересылала данные по шине данных или осуществляла адресацию памяти.

К шине может быть подключено много приемных устройств. Сочетание управляющих и адресных сигналов определяет, для кого именно предназначаются данные на шине. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные.

Управляющая логика активизирует в каждый конкретный момент только одно устройство, которое становиться ведущим. Когда устройство активизировано, оно помещает свои данные на шину. Все другие микросхемы в этот промежуток времени должны блокироваться с помощью соответствующего сигнала на линии управления.

Микропроцессор взаимодействует с внешней средой с помощью шины адреса/данных/состояния и нескольких управляющих сигналов. Собственно взаимодействие заключается в выполнении одной из двух операций: МП либо выводит (записывает) данные, либо вводит (считывает) данные или команды. В каждой из этих операций процессор должен указывать то устройство, с которым он будет взаимодействовать; другими словами, процессор должен адресовать ячейку памяти либо порт ввода или вывода.

Для передачи данных или выборки команды процессор инициирует так называемый цикл шины. Кроме процессора, цикл шины могут инициировать и другие устройства, например, арифметический сопроцессор.

Цикл шины представляет собой последовательность событий, в течение которой процессор выдает адрес ячейки памяти или периферийного устройства, а затем формирует сигнал записи или считывания, а также выдает данные в операции записи. Выбранное устройство воспринимает данные с шины в цикле записи или помещает данные на шину в цикле считывания. По окончании цикла шины устройство фиксирует записываемые данные или снимает считываемые данные.

Читайте также: Шины nexen 185 r14c

Видео:Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать

Виды видеопамяти и сколько её нужно? Какая нужна шина?

Рассмотрим цикл шины микропроцессора 8086, который имеет совмещенную 20-разрядную шину адреса/данных/состояния и шину управления (рис. 4).

Рис. 4. Шины микропроцессора 8086

Цикл шины микропроцессора 8086 состоит минимум из четырех тактов синхронизации, называемых также состояниями T, которые идентифицируются спадающим фронтом сигнала синхронизации CLC. В первом такте (T1) процессор выдает на шину адреса/данных/состояния AD20-AD0 адрес устройства, которое будет источником или получателем информации в текущем цикле шины. Во втором такте (T2) процессор снимает адрес с шины и либо переводит тристабильные буферы линий AD15-AD0 в высокоимпедансное состояние, подготавливая их к выводу информации в цикле считывания, либо выдает на них данные в цикле записи.

Управляющие сигналы, инициирующие считывание, запись или подтверждение прерываний, всегда выдаются в такте T2. В максимальной конфигурации системы сигнал записи формируется в такте T3, чтобы гарантировать стабилизацию сигналов данных до начала действия этого сигнала.

В такте T2 старшие четыре линии адреса/состояния переключаются с режима выдачи адреса на режим выдачи состояния. Сигналы состояния предназначены в основном для диагностических целей, например, идентифицируют сегментный регистр, который участвует в формировании адреса памяти.

В течение такта T3 процессор сохраняет информацию на линиях состояния. На шине данных в цикле записи сохраняются выводимые данные, а в цикле считывания производится опрос вводимых данных.

Тактом T4 заканчивается цикл шины. В этом такте снимаются все управляющие сигналы и выбранное устройство отключается от шины.

Таким образом, цикл шины для памяти или периферийного устройства представляет собой асинхронное действие. Устройство может управлять циклом шины только путем введения состояний ожидания.

Процессор выполняет цикл шины в том случае, когда ему необходимо осуществить запись или считывание информации. Если циклы шины не требуются, шинный интерфейс реализует холостые состояния Ti, в течение которых процессор сохраняет на линиях состояния сигналы состояния от предыдущего цикла шины.

Статьи к прочтению:

Как выбрать видеокарту. Или почему шина 256 бит — не рулит. (см. описание)

Похожие статьи:

Современные устройства радиоэлектронной техники используют большое число микросхем, что требует много линий для адресации, выбора и управления их…

Шины микропроцессорной системы и циклы обмена Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена…

Шины персонального компьютера

Шиной (Bus) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шины предназначены для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом. На рис. 1 дана структура шины.

Видео:Всё о видеокартах за 11 минутСкачать

Всё о видеокартах за 11 минут

Шина имеет места для подключения внешних устройств – слоты, которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

Архитектура или разрядность шины

Шины в ПК различаются по своему функциональному назначению:

  • системная шина (или шина CPU) используется микросхемами Cipset для пересылки информации к CPU и обратно (см. также рис. 1);
  • шина кэш-памяти предназначена для обмена информацией между CPU и кэш-памятью (см. также рис. 1);
  • шина памяти используется для обмена информацией между оперативной памятью RAM и CPU;
  • шины ввода/вывода информации подразделяются на стандартные и локальные.

Локальная шина ввода/вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время – шина USB.

Шина имеет собственную архитектуру, позволяющую реализовывать важнейшие ее свойства – возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

  • линии для обмена данными (шина данных);
  • линии для адресации данных (шина адреса);
  • линии управления данными (шина управления);
  • контролер шины.

Читайте также: Зимние шины ice tiger

Контроллер шины осуществляет управление процессором обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем – Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, с CPU 80386 и 80486 – 32-разрядную, а компьютеры с CPU семейства Pentium – 64-разрядную шину данных.

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство ПК. По шине адреса передается идентификационный код (адрес) отправителя и (или) получателя данных.

Для ускорения обмена данными используется устройство промежуточного хранения данных – оперативная памятьRAM. При этом решающую роль играет объем данных, которые могут временно храниться в ней. Объем зависит от разрядности адресной шины (числа линий) и тем самым от максимально возможного числа адресов, генерируемых процессором на адресной шине, т.е. от количества ячеек RAM, которым может быть присвоен адрес. Количество ячеек RAM не должно превышать 2 n , где n – разрядность адресной шины. В противном случае часть ячеек не будет использоваться, поскольку процессор не сможет адресоваться к ним.

Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

В двоичной системе счисления максимально адресуемый объем памяти равен 2 n , где n – число линий шины адреса.

Процессор 8088, например, имел 20 адресных линий и мог, таким образом, адресовать память объемом 1 Мбайт (2 20 =1 048 576 байт=1024 Кбайт). В ПК с процессором 80286 разрядность адресной шины была увеличена до 24 бит, а процессоры 80486, Pentium, Pentium MMX и Pentium II имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гбайт памяти.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV – 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2 х ) или четыре (режим 4 х ) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключается посредством интерфейса (Interface – сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен, только если интерфейсы этих компоненты совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточных стандартных интерфейсов, таких как интерфейсы необходимы для работы наиболее важных периферийных устройств ввода и вывода.

Системная шина предназначена для обмена информацией между CPU, памятью и другими устройствами, входящими в систему. К системным шинам относятся:

  • GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц;
  • EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Видео:ПРОЦЕССОРЫ ARM vs x86: ОБЪЯСНЯЕМСкачать

ПРОЦЕССОРЫ ARM vs x86: ОБЪЯСНЯЕМ

Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. В начале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключить дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM – к шине IEEE 1394. Однако наличие огромного парка ПК с шиной ISA будет востребована еще на протяжении некоторого времени.

Читайте также: Как ввезти шины в россию

Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

Таблица 2. Характеристики шин ввода/вывода

ШинаРазрядность, битТактовая частота, МГцПропускная способность, Мбайт/с
ISA 8-разрядная088,330008,33
ISA 16-разрядная168,330016,6
EISA328,330033,3
VLB32330132,3
PCI32330132,3
PCI 2.1 64-разрядная64660528,3
AGP (1 x )32660262,6
AGP (2 x )3266х20528,3
AGP (4 x )3266х21056,6

Шина VESA, или VLB, предназначена для связи CPU с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершено новую шину. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных

материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

Шина AGP – высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (3D-акселератор) с системой памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот.

Шина USB была разработана лидерами компьютерной и телекоммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпуса PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Все периферийные устройства должны быть оборудованы разъемами USB и подключаться к ПК через отдельный выносной блок, называемый USB-хабом, или концентратором, с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 4.

Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter). Каждое устройство, подключенное к шине SCSI, может инициировать обмен с другими устройством.

Шина IEEE 1394 это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между

ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбайт/с, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI.

Подключить к компьютеру через интерфейс IEEE 1394 можно практически любые устройств, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адаптеры IEEE 1394 для шины PCI.

Видео:КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ
  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    🌟 Видео

    Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать

    Влияние шин PCI-e и внутренней шины видеокарты на производительность

    Как выбрать видеокарту. Или почему шина 256 бит - не рулит. (см. описание)Скачать

    Как выбрать видеокарту. Или почему шина 256 бит - не рулит. (см. описание)

    Очень важные параметры видеокарты, на которые редко обращают внимание при покупке!Скачать

    Очень важные параметры видеокарты, на которые редко обращают внимание при покупке!

    Почему видеокарты стали такими плохими? Куда дели шину? Что вместо нее и Тест 4060, 4060Ti, 7600Скачать

    Почему видеокарты стали такими плохими?  Куда дели шину? Что вместо нее и Тест 4060, 4060Ti, 7600

    Принцип работы процессора на уровне ядраСкачать

    Принцип работы процессора на уровне ядра

    Отключаем поэтапно память у RTX 3090 и 3060 и измеряем разницу в производительности.Скачать

    Отключаем поэтапно память у RTX 3090 и 3060 и измеряем разницу в производительности.

    х64 или х86? Как узнать разрядность процессора и архитектуру windows?Скачать

    х64 или х86? Как узнать разрядность процессора и архитектуру windows?

    Разрядность ОС и процессоров. Что лучше x64 или x32 (x86)?Скачать

    Разрядность ОС и процессоров. Что лучше x64 или x32 (x86)?

    169 секунд и ты знаешь как работает процессорСкачать

    169 секунд и ты знаешь как работает процессор

    КАК РАБОТАЕТ ПРОЦЕССОР | ОСНОВЫ ПРОГРАММИРОВАНИЯСкачать

    КАК РАБОТАЕТ ПРОЦЕССОР | ОСНОВЫ ПРОГРАММИРОВАНИЯ

    04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]Скачать

    04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]

    Архитектура ЭВМ. Лекция 1: Типы архитектур. Комбинационная и последовательная логика.Скачать

    Архитектура ЭВМ. Лекция 1: Типы архитектур.  Комбинационная и последовательная логика.

    КАК РАБОТАЕТ ПРОЦЕССОР | КАК ТРАНЗИСТОРЫ НАУЧИЛИСЬ СЧИТАТЬ?Скачать

    КАК РАБОТАЕТ ПРОЦЕССОР | КАК ТРАНЗИСТОРЫ НАУЧИЛИСЬ СЧИТАТЬ?

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]Скачать

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]
Поделиться или сохранить к себе:
Технарь знаток