Архитектура с иерархией шин

Шина – набор проводников, объединенных едиными функциями. В структуре с общей шиной все устройства ВМ подключаются к системной шине (магистрали). Все устройства ввода-вывода (УВВ) имеют встроенную небольшую микросхему – контроллер, управляющий операциями обмена данными.

Рис. 1.3. Архитектура на основе общей шины

— простота изменения конфигурации.

— единственная шина для разнообразных потоков данных, сильно отличающихся по скорости (например, процессор-память и процессор-принтер);

— невозможна параллельная передача данных несколькими устройствами, так как информацию по шине в один момент времени может передавать только одно устройство.

Архитектура с иерархией шин

В структуре с иерархией шин помимо системной шины (между процессором и памятью) существует ряд дополнительных шин. Каждая шина имеет свою пропускную способность, достаточную для устройств, которые она связывает. Контролирует взаимодействие всех устройств в такой архитектуре чипсет (chipset – набор микросхем).

Рис. 1.4. Архитектура с иерархией шин

Структуры вычислительных систем

ВС с общей памятью

В такой структуре все процессоры используют для хранения и обмена данными общую память.

Рис. 1.5. Структура вычислительной системы с общей памятью

Распределенная ВС

В распределенных ВС каждый процессор имеет собственную локальную память (говорят, что память распределена по узлам), а обмен информацией осуществляется посредством коммуникационной сети. В такой структуре каждый узел системы представляет, по сути, отдельную вычислительную машину.

Рис. 1.6. Структура распределенной вычислительной системы

Видео:АПС Л14. ШиныСкачать

АПС Л14. Шины

Иерархия шин

Если к шине подключено большое число устройств, ее пропускная способность падает, поскольку слишком частая передача прав управления шиной от одного ус­тройства к другому приводит к ощутимым задержкам. По этой причине во многих ВМ предпочтение отдается использованию нескольких шин, образующих опреде­ленную иерархию. Сначала рассмотрим ВМ с одной шиной.

Видео:Шины - ключевой элемент качественной архитектуры | Андрей ПутинСкачать

Шины - ключевой элемент качественной архитектуры | Андрей Путин

Вычислительная машина с одной шиной

В структурах взаимосвязей с одной шиной имеется одна системная шина, обеспе­чивающая обмен информацией между процессором и памятью, а также между УВВ, с одной стороны, и процессором либо памятью — с другой (рис. 4.5).

Архитектура с иерархией шин

Рис. 4.5. Структура взаимосвязей с одной шиной

Для такого подхода характерны простота и низкая стоимость. Однако одношинная организация не в состоянии обеспечить высокие интенсивность и скорость транзакций, причем «узким местом» становится именно шина.

Видео:АПС Л19. ШиныСкачать

АПС Л19.  Шины

Вычислительная машина с двумя видами шин

Хотя контроллеры устройств ввода/вывода (УВВ) могут быть подсоединены не­посредственно к системной шине, больший эффект достигается применением од­ной или нескольких шин ввода/вывода (рис. 4.6). УВВ подключаются к шинам ввода/вывода, которые берут на себя основной трафик, не связанный с выходом на процессор или память. Адаптеры шин обеспечивают буферизацию данных при их пересылке между системной шиной и контроллерами УВВ. Это позволяет ВМ под­держивать работу множества устройств ввода/вывода и одновременно «развязать» обмен информацией по тракту процессор-память и обмен информацией с УВВ.

Архитектура с иерархией шин

Рис. 4.6. Структура взаимосвязей с двумя видами шин

Подобная схема существенно снижает нагрузку на скоростную шину «процес­сор-память» и способствует повышению общей производительности ВМ. В каче­стве примера можно привести вычислительную машину Apple Macintosh II, где роль шины «процессор-память» играет шина NuBus. Кроме процессора и памяти к ней подключаются некоторые УВВ. Прочие устройства ввода/вывода подключа­ются к шине SCSI Bus.

Видео:Системная шина процессораСкачать

Системная шина процессора

Вычислительная машина с тремя видами шин

Для подключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения (рис. 4.7).

Читайте также: Скорость передачи данных по шине pci express

Архитектура с иерархией шин

Рис. 4.7. Структура взаимосвязей с тремя видами шин

Шины ввода/вывода подключаются к шине расширения, а уже с нее через адап­тер к шине «процессор-память». Схема еще более снижает нагрузку на шину «про­цессор-память». Такую организацию шин называют архитектурой с «пристрой­кой» (mezzanine architecture).

Видео:НОВАЯ БАЗА ОПТИМАЛЬНАЯ СХЕМА ПРОИЗВОДСТВА ЗАВОД ПО ПРОИЗВОДСТВУ ВСЕГО НА ШИНЕ FactorioСкачать

НОВАЯ БАЗА ОПТИМАЛЬНАЯ СХЕМА ПРОИЗВОДСТВА ЗАВОД ПО ПРОИЗВОДСТВУ ВСЕГО НА ШИНЕ Factorio

Распределение линий шины

Любая транзакция на шине начинается с выставления ведущим устройством ад­ресной информации. Адрес позволяет выбрать ведомое устройство и установить соединение между ним и ведущим. Для передачи адреса используется часть сиг­нальных линий шины, совокупность которых часто называют шиной адреса (ША).

На ША могут выдаваться адреса ячеек памяти, номера регистров ЦП, адреса портов ввода/вывода и т. п. Многообразие видов адресов предполагает наличие дополнительной информации, уточняющей вид, используемый в данной транзак­ции. Такая информация может косвенно содержаться в самом адресе, но чаще пе­редается по специальным управляющим линиям шины.

Разнообразной может быть и структура адреса. Так, в адресе может конкрети­зироваться лишь определенная часть ведомого, например, старшие биты адреса могут указывать на один из модулей основной памяти, в то время как младшие биты определяют ячейку внутри этого модуля.

В некоторых шинах предусмотрены адреса специального вида, обеспечиваю­щие одновременный выбор определенной группы ведомых либо всех ведомых сразу (broadcast). Такая возможность обычно практикуется в транзакциях записи (от ведущего к ведомым), однако существует также специальный вид транзакции чте­ния (одновременно от нескольких ведомых общему ведущему). Английское назва­ние такой транзакции чтения broadcall можно перевести как — «широковещательный опрос». Информация, возвращаемая ведущему, представляет собой результат поби­тового логического сложения данных, поступивших от всех адресуемых ведомых.

Число сигнальных линий, выделенных для передачи адреса (ширина шины ад­реса), определяет максимально возможный размер адресного пространства. Это одна из базовых характеристик шины, поскольку от нее зависит потенциальная емкость адресуемой памяти и число обслуживаемых портов ввода/вывода.

Совокупность линий, служащих для пересылки данных между модулями системы, называют шиной данных (ШД). Важнейшие характеристики шины данных — ширина и пропускная способность.

Ширина шины данных определяется количеством битов информации, которое может быть передано по шине за одну транзакцию (цикл шины). Цикл шины сле­дует отличать от периода тактовых импульсов — одна транзакция на шине может занимать несколько тактовых периодов. В середине 1970-х годов типовая ширина шины данных составляла 8 бит. В наше время это обычно 32,64 или 128 бит. В лю­бом случае ширину шины данных выбирают кратной целому числу байтов, при­чем это число, как правило, представляет собой целую степень числа 2.

Элемент данных, задействующий всю ширину ШД, принято называть словом, хотя в архитектуре некоторых ВМ понятие «слово» трактуется подругому, то есть слово может иметь разрядность, не совпадающую с шириной ШД.

В большинстве шин используются адреса, позволяющие указать отдельный байт слова. Это свойство оказывается полезным, когда желательно изменить в памяти лишь часть полного слова.

При передаче по ШД части слова пересылка обычно производится по тем же сигнальным линиям, что и в случае пересылки полного слова, однако в ряде шин «урезанное» слово передается по младшим линиям ШД. Последний вариант мо­жет оказаться более удобным при последующем расширении шины данных, по­скольку в этом случае сохраняется преемственность со «старой» шиной. Ширина шины данных существенно влияет на производительность ВМ. Так, если шина данных имеет ширину вдвое меньшую чем длина команды, ЦП в тече­ние каждого цикла команды вынужден осуществлять доступ к памяти дважды.

Читайте также: Можно ли ставить шины разного радиуса

Пропускная способность шины характеризуется количеством единиц информации (байтов), которые допускается передать по шине за единицу времени (се­кунду), а определяется физическим построением шины и природой подключае­мых к ней устройств. Очевидно, что чем шире шина, тем выше ее пропускная способность.

Последовательность событий, происходящих на шине данных в процессе од­ной транзакции, иллюстрирует рис. 4.9. Пусть устройство А на одном конце шины передает данные устройству В на другом ее конце.

Архитектура с иерархией шин

Рис. 4.9. Временная диаграмма пересылки данных

Сначала устройство А выставляет данные на шину. Здесь tn — это задержка между моментом выставления данных устройством А и моментом их появления на шине. Этот интервал времени может составлять от 1 до 4 не. Как уже отмечалось, скорость распространения данных по шине реально не в состоянии превысить 70% от скорости света. Единственный способ уменьшения задержки распространения tpc — сокращение длины шины. Когда сигнал достигает устройства, он должен быть «захвачен». Захват данных устройством В может быть произведен только по про­шествии некоторого времени стабилизации. Время стабилизации tcт — это время, в течение которого данные на входе устройства В должны стабилизироваться с тем, чтобы их можно было однозначно распознать. Необходимо также упомянуть и вре­мя удержания tуд — интервал, в течение которого информация должна оставаться на шине данных после того, как они были зафиксированы устройством В. Общее время передачи данных по шине tп определяется выражением tп = tзд + tрс.+ tст + tуд. Если подставить типовые значения этих параметров, получим 4 + 1,5 + 2 + 0 = 7,5 не, что соответствует частоте шины 109/7,5 = 133,3 МГц.

На практике передача данных осуществляется с задержкой на инициализацию транзакции (£„). Учитывая эту задержку, максимальную скорость передачи можно определить как

Архитектура с иерархией шин

Некоторые шины содержат дополнительные линии, используемые для обнару­жения ошибок, возникших в процессе передачи. Выделение по одной дополни­тельной линии на каждый отдельный байт данных позволяет контролировать лю­бой байт по паритету, причем и в случае пересылки по ШД лишь части слова. Возможен и иной вариант контроля ошибок. В этом случае упомянутые дополни­тельные линии используются совместно. По ним передается корректирующий код, благодаря которому ошибка может быть не только обнаружена, но и откорректи­рована. Такой метод удобен лишь при пересылке по шине полных слов.

Если адрес и данные в шине передаются по независимым (выделенным) сиг­нальным линиям, то ширина ША и ШД обычно выбирается независимо. Наибо­лее частые комбинации: 16-8, 16-16, 20-8, 20-16, 24-32 и 32-32. Во многих ши­нах адрес и данные пересылаются по одним и тем же линиям, но в разных тактах цикла шины. Этот прием называется временным мультиплексированием и будет рассмотрен позже. Здесь же отметим, что в случае мультиплексирования ширина ША и ширина ШД должны быть взаимоувязаны.

Применение раздельных шин адреса и данных позволяет повысить эффектив­ность использования шины, особенно в транзакциях записи, поскольку адрес ячейки памяти и записываемые данные могут передаваться одновременно.

Помимо трактов пересылки адреса и данных, неотъемлемым атрибутом любой шины являются линии, по которым передается управляющая информации и ин­формация о состоянии участвующих в транзакции устройств. Совокупность та­ких линий принято называть шиной управления (ШУ), хотя такое название пред­ставляется не совсем точным. Сигнальные линии, входящие в ШУ, можно условно разделить на несколько групп.

Читайте также: Шины кама для лада гранта

Первую группу образуют линии, по которым пересылаются сигналы управле­ния транзакциями, то есть сигналы, определяющие:

тип выполняемой транзакции (чтение или запись);

количество байтов, передаваемых по шине данных, и, если пересылается часть слова, то какие байты;

какой тип адреса выдан на шину адреса;

какой протокол передачи должен быть применен.

На перечисленные цели обычно отводится от двух до восьми сигнальных ли­ний.

Ко второй группе отнесем линии передачи информации состояния (статуса). В эту группу входят от одной до четырех линий, по которым ведомое устройство может информировать ведущего о своем состоянии или передать код возникшей ошибки.

Третья группалинии арбитража. Вопросы арбитража рассматриваются не­сколько позже. Пока отметим лишь, что арбитраж необходим для выбора одного из нескольких ведущих, одновременно претендующих на доступ к шине. Число линий арбитража в разных шинах варьируется от 3 до 11.

Четвертую группу образуют линии прерывания. По этим линиям передаются запросы на обслуживание, посылаемые от ведомых устройств к ведущему. Под собственно запросы обычно отводятся одна или две линии, однако при одновре­менном возникновении запросов от нескольких ведомых возникает проблема ар­битража, для чего могут понадобиться дополнительные линии, если только с этой целью не используются линии третьей группы.

Пятая группа — линии для организации последовательных локальных сетей. Наличие от 1 до 4 таких линий стало общепринятой практикой в современных шинах. Обусловлено это тем, что последовательная передача данных протекает значительно медленнее, чем параллельная, и сети значительно выгоднее строить, не загружая быстрые линии основных шин адреса и данных. Кроме того, шины этой группы могут быть использованы как полноценный, хотя и медленный, из­быточный тракт для замены ША и ШД в случае их отказа. Иногда шины пятой группы назначаются для реализации специальных функций, таких, например, как обработка прерываний или сортировка приоритетов задач.

В некоторых ШУ имеется шестая группа сигнальных линий — от 4 до 5 линий позиционного кода, подсоединяемых к специальным выводам разъема. С помощьюперемычек на этих выводах можно задать уникальный позиционный код разъема на материнской плате или вставленной в этот разъем дочерней платы. Такой код может быть использован для индивидуальной инициализации каждой отдельной платы при включении или перезапуске системы.

Наконец, в каждой шине обязательно присутствуют линии, которые в нашей классификации входят в седьмую группу, которая по сути является одной из важ­нейших. Это группа линий тактирования и синхронизации. При проектировании шины таким линиям уделяется особое внимание. В состав группы, в зависимости от протокола шины (синхронный или асинхронный), входят от двух до шести линий.

В довершение необходимо упомянуть линии для подвода питающего напряже­ния и линии заземления.

Большое количество линий в шине предполагает использование разъемов со значительным числом контактов. В некоторых шинах разъемы имеют сотни кон­тактов, где предусмотрены подключение вспомогательных шин специального на­значения, свободные линии для локального обмена между дочерними платами, множественные параллельно расположенные контакты для «размножения» пи­тания и «земли». Значительно чаще число контактов разъема ограничивают. В табл. 4.1 показано возможное распределение линий 32-разрядной шины в 64-кон­тактном разъеме.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    🎦 Видео

    CAN шина👏 Как это работаетСкачать

    CAN шина👏 Как это работает

    ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВСкачать

    ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВ

    Руководство Factorio - Архитектура фабрики: Главная шинаСкачать

    Руководство Factorio - Архитектура фабрики: Главная шина

    АПС Л19. ШиныСкачать

    АПС Л19. Шины

    Шины ввода-выводаСкачать

    Шины ввода-вывода

    ОСОБЕННОСТИ КОНСТРУКЦИИ ШИНЫ! КОНСТРУКЦИЯ РАДИАЛЬНОЙ ШИНЫ!Скачать

    ОСОБЕННОСТИ КОНСТРУКЦИИ ШИНЫ! КОНСТРУКЦИЯ РАДИАЛЬНОЙ ШИНЫ!

    Архитектура шины DATAREON ESBСкачать

    Архитектура шины DATAREON ESB

    ✅ КАКОЙ ВЫБРАТЬ ЛУЧШИЙ РИСУНОК ПРОТЕКТОРА? НАПРАВЛЕННЫЙ СИММЕТРИЯ АСИММЕТРИЧНЫЙСкачать

    ✅ КАКОЙ ВЫБРАТЬ ЛУЧШИЙ РИСУНОК ПРОТЕКТОРА? НАПРАВЛЕННЫЙ СИММЕТРИЯ АСИММЕТРИЧНЫЙ

    Введение в архитектуру компьютеровСкачать

    Введение в архитектуру компьютеров

    Хранение шин. 3 основных правила.Скачать

    Хранение шин. 3 основных правила.

    Экспресс диагностика CAN шины на автомобиле. №21Скачать

    Экспресс диагностика CAN шины на автомобиле. №21

    Различия SOA и микросервисной архитектуры за 9 минутСкачать

    Различия SOA и микросервисной архитектуры за 9 минут

    Шина ДанныхСкачать

    Шина Данных

    Дополнение про китайскую шину triangleСкачать

    Дополнение про китайскую шину triangle
Поделиться или сохранить к себе:
Технарь знаток