Арифметико-логическое устройство — один из блоков процессора, управляемый УУ (устройством управления). Его предназначение: выполнение логических и арифметических преобразований над данными-операндами (аргументами операции, информацией, обрабатываемой программой). Разрядность операндов в данном случае — размер или длина машинного слова.
Современное многофункциональное АЛУ состоит сегодня из двух частей:
- Операционное устройство.
- Устройство управления. Проводит вторичную дешифрацию кодов команды, определяет операцию, выполняемую в арифметико-логическом устройстве.
- Набор выполняемых операций
- Классификация АЛУ
- Основные функции
- Главные количественные характеристики
- Главные качественные характеристики
- История возникновения
- Внутреннее устройство АЛУ
- Функции регистров АЛУ
- Операция сложения
- Операция вычитания
- Операции в устройстве
- Что такое арифметико-логическое устройство (АЛУ) на News4Auto.ru.
- Собираем 8-битный компьютер
- Видеоиллюстрация
- Архитектура
- Компоненты
- Схема
- Компоненты
- Тактовый генератор
- Оперативная память
- Арифметико-логическое устройство
- Регистр ввода-вывода и дисплей
- Счётчик команд
- 🔥 Видео
Видео:25.1 Регистры (назначение)Скачать
Набор выполняемых операций
Важно знать, какие операции должно исполнять АЛУ для того, чтобы обладать функциональной полнотой. Как правило, хватает четырех:
- Обращение к памяти устройства для чтения или записи информации.
- Декремент/инкремент.
- Сравнение. Здесь реализуется возможность условного перехода.
- Остановка функционирования устройства.
Если мы обратимся к первым арифметико-логическим устройствам, то увидим, что количество выполняемых ими операций ограничивалось 16-ю. Современные АЛУ способны выполнять сотни! Кстати, число операций и сегодня является важнейшей характеристикой данных устройств.
Видео:Как получить сумму значений из двух регистров: соединяем регистры и арифметико-логическое устройствоСкачать
Классификация АЛУ
Мы помним, арифметико-логическое устройство — устройство управления и операционное. Но не все современные и исторические АЛУ одинаковы. Далее мы приведем самые распространенные их классификации.
По способу представления информации:
По способу действий с операндами:
- Параллельные. В этом случае операции над всеми разрядами выполняются АЛУ одновременно.
- Последовательные. В данном случае операции будут выполняться по очереди, последовательно над каждым из разрядов.
- Параллельно-последовательные. Слово данных здесь делится на слоги. Обработка информации в таком АЛУ (арифметико-логическом устройстве) ведется параллельно над разрядами слога и последовательно над самими слогами.
По применению систем исчисления:
По особенностям использования узлов и элементов:
- Блочные. Для выполнения отдельных арифметических операций в систему арифметико-логического устройства процессора вводят специальные блоки. Последние позволяют вести параллельно процессы обработки информации.
- Конвейерные. Чем отличаются АЛУ такого типа? Любая операция будет разбиваться на последовательность из микроопераций. Они выполняются за определенные такты (равные временные промежутки) на разных ступенях такого конвейера. Операция над потоком операндов, таким образом, выполняется каждый такт.
- Многофункциональные. Это универсальные АЛУ, которые способны исполнить множество операций в одном устройстве. Однако здесь требуется настройка на выполнение конкретной операции с помощью ее кода.
По временным характеристикам:
- Синхронные. В таких арифметико-логических устройствах компьютера каждая операция станет выполняться за один такт.
- Асинхронные. Соответственно, нетактируемые АЛУ. Обеспечивают высокую степень быстродействия, так как выполняются на комбинационных схемах.
По характеристике устройства управления:
Видео:Собираем 8-битное арифметико-логическое устройство (АЛУ)Скачать
Основные функции
Арифметико-логическое устройство является составной частью процессора компьютера. АЛУ будет выполнять следующие функции:
- Двоичной арифметики для информации в форматах с фиксированной точкой.
- Двоичной арифметики для информации в форматах с плавающей точкой.
- Арифметики двоично-десятичного представления сведений.
- Логические операции (арифметические и логические сдвиги).
- Пересылка информации.
- Работа с символьными данными.
- Работа с графической информацией.
Видео:АПС Л14. ШиныСкачать
Главные количественные характеристики
Составные части арифметико-логического устройства (ОУ и УУ) определяют количественные характеристики всей системы АЛУ. В частности, это следующее:
- Время выполнения одной операции.
- Скорость выполнения операций вообще.
- Число исполняемых операций.
- Точность предоставленной информации.
Видео:Архитектура микропроцессора 8085Скачать
Главные качественные характеристики
Арифметико-логическое устройство (АЛУ) является составной частью процессора. Это определяет его важнейшие качественные характеристики:
- Структурные особенности системы АЛУ.
- Методики кодирования данных.
- Форматы представления информации — с плавающей или фиксированной точкой.
Видео:Лекция 323. Atmega 8: Принцип работы АЛУСкачать
История возникновения
Создателем арифметико-логических устройств считается Джон фон Нейман, разработчик компьютеров ЭНИАК (электронных числовых вычислителей).
Уже в 1945 году им были опубликованы первые научные работы по своему стартовому изобретению — компьютеру EDVAC. В следующем году он уже работал вместе со своими коллегами над созданием такого устройства в Принстонском институте перспективных исследований.
Архитектура этого изобретения («архитектура фон Неймана») в дальнейшем стала базой, прототипом архитектур и большей части последующих компьютеров. В своих работах ученый указывал на наличие устройств, которые, по его мнению, являются обязательными для каждого компьютера. Среди них было упомянуто АЛУ. Фон Нейман считал, что арифметико-логическое устройство необходимо, потому что позволяет выполнять системе математические базовые операции. Как то: сложение и вычитание, умножение и деление.
Видео:Лекция 7: Структура МKСкачать
Внутреннее устройство АЛУ
Мы уже разобрали, что условно АЛУ можно разделить на две части:
- УУ (микропрограммное устройство). Задает последовательность команд и микрокоманд.
- ОУ. Здесь реализуется ранее заданная последовательность команд и микрокоманд. Операционные устройства, в свою очередь, разделяются по типу обрабатываемой информации, по способу обработки данных, логической структуре.
При этом условно состав АЛУ также подвергается следующей градации:
- Регистры. Служат для обработки данных, поступающих как из пассивной, так и из оперативной памяти.
- Логические команды. Служат для обработки слов по микрокомандам. Последние, естественно, будут поступать из УУ — устройства управления.
Сами микрокоманды делятся на две категории:
- Поступают от внешнего источника в АЛУ. Вызывают в арифметико-логическом устройстве преобразование информации.
- Генерируются в самом АЛУ. Оказывают свое влияние на микропрограммное устройство. Тем самым изменяют нормальный, стандартный порядок следования команд.
Видео:Последовательные логические устройства. Триггеры (RS, D, JK, T). Принцип работы, типовые схемы.Скачать
Функции регистров АЛУ
Чтобы иметь представление о работе АЛУ, нам нужно поближе познакомиться с функциями его регистров:
- Pr1. Это аккумулятор или аккумуляторы. Считается главным регистром устройства, в котором и образуется результат произведенных вычислений.
- Pr2, Pr3. Регистры операндов в зависимости от характера исполняемой операции — слагаемого, делителя, сомножителя и проч.
- Pr4. Это адресный регистр. Он запоминает (в иных случаях формирует) адреса операндов результата.
- Pr6. Некое количество индексных регистров. Их содержимое будет использоваться для формирования адресов.
- Pr7. Вспомогательные регистры. По желанию разработчика могут стать аккумуляторами, индексными или вовсе использоваться для сохранения промежуточных результатов вычисления.
Теперь предлагаем вам обратиться к конкретным алгоритмам работы АЛУ.
Видео:Архитектура ЭВМ. Лекция 2: АЛУ. Устройство памятиСкачать
Операция сложения
Функционально арифметико-логическое устройство будет состоять из Регистра 1, Регистра 2, сумматора и схемы управления.
Теперь распишем арифметическую операцию по тактам:
- Значение операнда № 1, участвующего в операции сложения, поступает в Регистр 1 по кодовой шине.
- Значение операнда № 2, участвующего в операции сложения, поступает в Регистр 2 по кодовой шине.
- Соответственно, по кодовой шине инструкций в схему управления поступает инструкция по выполнению данной операции.
- Данные из регистров уходят в сумматор. Далее схема управления уже дает команду на выполнение сложения.
- Результат по произведенной операции уходит в Регистр 1.
- Результат операции арифметико-логического устройства далее поступает в результирующий блок.
Читайте также: Шина при синдроме запястного канала
Видео:Л13. Цифровая схемотехника. Конвейерный процессорСкачать
Операция вычитания
Давайте рассмотрим выполнение еще одной простой арифметической операции:
- Значение операнда № 1, принимающего участие в операции вычитания, проходит в Регистр 1 по кодовой шине.
- Значение операнда № 2, принимающего участие в операции вычитания, проходит в Регистр 2 по кодовой шине.
- Инструкция по выполнению данного алгоритма выводится по кодовой шине инструкций к схеме управления.
- Происходит переформирование положительного числа в отрицательное схемой управления.
- Результат такого преобразования операнда идет далее в сумматор.
- Сумматор выполняет сложение данных чисел.
- Результат операции поступает в Регистр 1.
- Результат операции вычитания отправляется в результирующий блок.
Видео:Арифметическое устройство ЭВМСкачать
Операции в устройстве
И еще одна тема напоследок. Мы должны помнить, что все операции,выполняемые в АЛУ, — логические. Их можно разделить на следующие категории:
- Индексной арифметики.
- Десятичной арифметики.
- Специальной арифметики.
- Двоичной арифметики для значений с фиксированной точкой.
- Двоичной, шестнадцатеричной арифметики для значений с плавающей точкой.
- Над алфавитно-цифровыми полями.
- Над логическими кодами.
Арифметико-логическое устройство — основная часть процессора любого компьютера. Было разработано еще в середине прошлого века прославленным фон Нейманом. Призвано исполнять простые арифметические и логические операции в компьютере. Сегодня существует большое количество разновидностей АЛУ, что видно из множества представленных классификаций данных устройств.
Что такое арифметико-логическое устройство (АЛУ) на News4Auto.ru.
Наша жизнь состоит из будничных мелочей, которые так или иначе влияют на наше самочувствие, настроение и продуктивность. Не выспался — болит голова; выпил кофе, чтобы поправить ситуацию и взбодриться — стал раздражительным. Предусмотреть всё очень хочется, но никак не получается. Да ещё и вокруг все, как заведённые, дают советы: глютен в хлебе — не подходи, убьёт; шоколадка в кармане — прямой путь к выпадению зубов. Мы собираем самые популярные вопросов о здоровье, питании, заболеваниях и даем на них ответы, которые позволят чуть лучше понимать, что полезно для здоровья.
Видео:КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать
Собираем 8-битный компьютер
Привет! Я всегда хотел собрать свой компьютер — не только в теории понять как «бегают» биты, складываются числа, работают прерывания, как программный код превращается в нули и единицы. У меня получилось и я хотел бы поделиться своим опытом. Это заняло у меня 140 часов и $400 на все компоненты и их доставку. Если вам интересно узнать о проекте, спускайтесь под кат.
У меня нет цели научить читателя компьютерной электронике, но есть цель немного о ней рассказать и заинтересовать для самостоятельного изучения. Поэтому в статье упущено много базовой информации, нет деталей реализации различных компонентов, упрощены схемы — я не хочу перегружать материал. Если вас заинтересует статья, в конце есть раздел со всеми ссылками на видео и книгу для детального ознакомления.
Видео:Введение в архитектуру компьютеровСкачать
Видеоиллюстрация
На видео снизу я разбираю программу для вывода на экран чисел Фибоначчи, написанную на языке C. Из кода на языке С, я генерирую код на языке ассемблера, чтобы лучше понять принципы выполнение программы на компьютере. Так как компьютер из статьи не понимает язык ассемблера, я перевожу его на язык, который он понимает.
Вы можете посмотреть первые 10 секунд видео, в котором демонстрируется выполнение программы, вернуться на статью и дочитать ее, а потом с бóльшим контекстом досмотреть видео.
Видео:Как работает процессор: частоты, шины и т.д.Скачать
Архитектура
Компьютер построен на архитектуре SAP-1 simpleaspossible. SAP-1 — это архитектура для начинающих, главная цель — понять базовые идеи и концепции построения компьютера без углубления в детали. Дизайн специально разработан для академических целей.
Большинство деталей в проекте — это 7400 серия интегральных микросхем от Texas Instruments, американской компании-производителя полупроводниковых изделий.
Компоненты
Компьютер состоит из следующих компонентов:
Регистр адреса оперативной памяти.
Регистр ввода-вывода и дисплей.
Схема
Схема расположения компонентов выглядит следующим образом:
Видео:АПС Л2. Основные концепции и инструментыСкачать
Компоненты
Тактовый генератор
Тактовый генератор координирует работу всех компонентов в компьютере. Он подключен почти к каждому компоненту отдельно и раз в определенное время выдает напряжение. Это нужно для того, чтобы синхронизировать выполнение программы разными частями компьютера.
В основе тактового генератора лежит чип LM555CN — это таймер, устройство для формирования повторяющихся импульсов тактовых сигналов. С помощью резисторов и конденсатора можно контролировать частоту импульсов. Так, например, у Intel Core i9-7980XE базовая тактовая частота — 2.60 GHz. Это значит, что за одну секунду выдается 2.6 миллиарда импульсов.
Частота импульса складывается из времени наличия напряжения и его отсутствия как проиллюстрировано на рисунке ниже. По формуле ниже, она из документации к таймеру, при резисторе А — 100 Ом, резисторе B — 100K Ом, конденсаторе С — 2 микрофарад, получается, что один такт занимает — 0.693 * 201000 * 0.000002 = 0.278 секунды. За одну секунду получится — 1 / 0.278 = 3.59 такта.
Пример использования тактового генератора — внизу на картинке на макетной плате находится чип SN74LS173, это 4-битный D flip-flop — он нужен для того, чтобы хранить 4 битовых значения. Таким образом можно хранить 16 комбинаций значений, от 0000 до 1111. У чипа 16 ножек с помощью которых он вставляется в плату. Каждая из которых отвечает за свою часть работы. Чтобы не вдаваться в подробности, если на M и N разрешение на запись, и 1D подать напряжение, мы ожидаем, что чип сохранит значение как напряжение и отобразит это в 1Q, выход которого ведет к диоду красная лампочка — но ничего не произойдет. Для сохранения значения нам нужно также подать напряжение на вход CLK clock signal — тактовый сигнал, который исходит из тактового генератора.
В проекте тактовый генератор чуть-чуть сложнее:
Вместо резистора на 100К Ом там находится потенциометр, это «резистор с крутилкой», его можно поворачивать за и против часовой стрелки и динамически изменять сопротивление от 0 ОМ до 1М Ом. Таким образом можно увеличить количество тактов в секунду и компьютер будет работать быстрее, и наоборот.
Читайте также: Разбор варианта огэ по математике шины
Вместо одного таймера, там три, переключатель и кнопка. Это позволяет переключаться между двумя режимами — ручной и автоматический. В ручном режиме такт совершается при нажатии кнопки — это позволяет дебагать работу компьютера, а автоматический вы уже видели.
Оперативная память
Оперативная память нужна компьютеру, чтобы хранить определенный набор данных по определенным адресам. Оперативная память используется для хранения команд компьютера (например, сложить два числа), адресов (сложить число по какому-то адресу) и данных (записать какое-то число по какому-то адресу).
Знакомый нам чип SN74LS173 может сохранить 4 бита информации, чтобы сохранить 8 бит информации — нужно взять два SN74LS173. Таким образом, мы можем хранить значения от 0000 0000 до 1111 1111, что равно 256 возможных комбинаций, 2 в степени 8.
На схеме ниже к двум SN74LS173 подключен DIP-переключатель на 8 переключателей, которыми можно задавать 8 бит информации. Так как переключатели подсоединены к питанию, если переключить один из них, он выдаст напряжение. При подаче сигнала от тактового генератора, это значение сохранится в чипе и соответствующий диод загорится.
На самом деле, мы хотим контролировать когда производить запись. Без этого в памяти может оказаться любое значение – например, мы начинаем переключать переключатели, не переключили до конца, а тактовый сигнал сработал и память обновилась.
Для этого мы соединяем входы M и N с кнопкой. Кнопка подключена к напряжению, если на нее нажать, она передаст напряжение по перемычке. Нажав на кнопку и дождавшись тактового сигнала, мы получим запись значения.
Таким образом, схематически, можно выразить масштабируемость оперативной памяти как наличие одной кнопки, которая контролирует запись 8 бит. Если мы хотим иметь 128 бит оперативной памяти, а именно столько памяти в проекте, нам нужно 16 кнопок, каждая из которых отвечает за свои 8 ячеек оперативной памяти 16 * 8 = 128.
Если бы мы горизонтально подключили все ячейки между собой все первые ячейки каждой колонки, все вторые, третьи и так далее, соединив с одним переключателем на 8 переключателей, мы могли бы контролировать в какую именно колонку записать переданное через переключатели значение нажатием кнопки. Нажали на 16-ю кнопку — значение записалось только в последнюю колонку ячеек.
Кнопки получились бы репрезентацией адресов оперативной памяти. Но это сложно масштабировать, легче масштабировать бинарное представление 16 кнопок. То есть 4 бита, от 0000 до 1111 — в сумме 16 комбинаций, что равно количеству кнопок и, соответственно, колонок ячеек. С этим поможет DIP-переключатель на 4 переключателя.
Если значение переключателей будет 0000 — выбираем первый ряд, если 0001 — второй ряд, 0011 — четвертый ряд, и так далее до 1111 — 16 ряд. Раз кнопки превратились в переключатели, а переключатели превратились в перенаправление на определенную колонку ячеек, мы потеряли кнопку на запись — которую тоже надо добавить.
Таким образом, мы изобретаем декодер адресов. На вход декодера подается 4 сигнала, отвечающих за адрес в памяти, и 1 сигнал, отвечающий за запись.
Мы не будем разбирать устройство декодера. Внутри декодера находится комбинационная логика — логические вентили И AND и инверторы NOT. Иллюстрация работы в коротком видео здесь.
Таким образом, мы имеем 4 переключателя для адресов, 8 переключателей для значений ячеек, 1 кнопка на запись значений.
Арифметико-логическое устройство
Арифметико-логическое устройство (АЛУ) — компонент, который выполняет арифметические и логические операции. Например, АЛУ в проекте умеет суммировать и вычитать два числа, каждое из которых представлено 8 битами. Вид операции зависит от положения тумблера: замкнутый тумблер даст сигнал АЛУ сложить числа, разомкнутый вычесть одно число из другого.
Результат операции сразу сохраняется в отдельный 8-битный регистр, чтобы позже выполнить другие функции над ним — например, положить в оперативную память по какому-то из адресов. Этот регистр называется регистр для суммы.
Но на самом деле, АЛУ не принимает произвольные значения из переключателей. Каждое значение хранится в отдельном регистре — A и B. Эти регистры являются буферными регистрами. Буферные регистры предназначены для временного хранения данных и напрямую подключены ко входам АЛУ.
Регистры A и B почти идентичны по строению 4 знакомых нам чипа SN74LS173, но у них разные задачи. Регистр A призван сохранять промежуточный результат вычислений — один операнд, а регистр B призван хранить другой операнд.
Ниже в коде чуть более наглядно о задачах регистров на примере счётчика с инкрементом. Изначально, мы инициализируем переменную a и регистр А значением 0, переменную b регистр B значением 2. Cуммируем a и b, сохраняя в переменную sum регистр суммы в АЛУ. Значение из sum перезаписывается в a. Повторяем в цикле пока a меньше 255.
Схема архитектуры, которую вы уже видели, и пример задачи показывает, что:
Регистр суммы в АЛУ нужен для сохранения результата операции между регистрами A и B — значение можно передать в другие компоненты через шину данных. Например, в регистр A и решить этим задачу с инкрементом.
Регистр B нужен для хранения вспомогательных значений — в него можно только записать через шину данных.
Регистр A нужен для временного хранения значений — его можно передать в другие компоненты через шину данных.
Также АЛУ не подключен к тактовому генератору, это видно на схеме выше, — это ассинхронный компонент. Это значит, что он отрабатывает сразу как только меняются значения в A и/или B. Это достигается за счет того, что в состав АЛУ включены только комбинационные схемы, как у декодера адресов.
Схема SN74LS181— 4-битного АЛУ
Регистр ввода-вывода и дисплей
Внизу на картинке изображен семисегментный индикатор — он может отображать цифры и буквы. Он состоит из семи сегментов, включающихся и выключающихся по отдельности — с помощью подачи питания на опредленные ножки.
Читайте также: Шины bfgoodrich all terrain 245 70r16
Чтобы отобразить букву F, нужно подать питание на 1, 2, 4 и 6 ножки слева направо, сверху вниз. Чтобы отобразить цифру 1, нужно подать питание на 5 и 9 ножки. Вместо порядкового номера ножки, можно использовать буквы на схеме — для цифры 1 это B и C.
Если мы хотим отобразить число, состоящее из нескольких цифр, мы можем использовать несколько индикаторов.
В проекте таких индикаторов 3 — они используются для отображения чисел в диапазоне от 0 00000000 до 255 11111111, один индикатор на одно число 0 отображается как 000, 1 как 001. Также в индикаторе есть ножка десятичного знака DP на схеме на случай, если нужно отображать числа с дробной частью (например, 17.3) — но такой функциональности в проекте нет, поэтому эта ножка не используется. Как вы поняли, шестнадцатеричная система счисления в проекте не используется, вместо F (15), используется два дисплея с 1 и 5.
Снизу проиллюстрированы все возможные варианты отображения одного десятичного числа на дисплее.
Теперь нужно понять как «соединить» 4-битное значение в диапазоне от 0000 0 до 1111 9 с входами дисплея от A до G. Например, если значение 0011, то на B и C нужно подать напряжение, а на A, D, E, F, G не нужно. С этим поможет таблица истинности ниже.
Вы могли заметить, что эта таблица похожа на структуру данных ассоциативный массив. Такой массив может хранить пары вида ключ-значение и поддерживает операции добавления пары, поиска и удаления.
Что еще похоже на ассоциативный массив? Оперативная память — адрес на вход и значения на выход. Мы можем сохранять по адресам, которые соответствуют двоичным числам 1001, значения для входов дисплея, которые соответствуют десятичному отображению 9.
Но оперативная память нам не подойдет потому, что не может хранить свои данные «вечно», только при наличии питания. Это значит, что нам придется каждый раз заново записывать в оперативную память значения из таблицы истинности.
Кроме оперативной памяти есть еще другие, которые сохраняют ее свойства (адреса, значения, запись и так далее):
ROM (read-only memory) — на заводе изготовителя «заливают» значения по адресам, а после значения изменить нельзя. Если надо что-то изменить, необходимо менять чип целиком.
PROM (programmable read-only memory) — изготавливается с «чистыми» значениями, которые можно запрограммировать один раз.
EPROM (erasable programmable read-only memory) — память можно перезаписывать, но чтобы стереть значения нужно несколько часов держать специальное окошко на чипе под светом ультрафиолетовой лампы. Окошко заклеивается наклейкой или изолентой.
EEPROM (electrically erasable programmable read-only memory) — память можно перезаписывать сколько угодно раз с помощью электрических импульсов — напряжения.
В проекте используется EEPROM — AT28C16. У него 11 входов для адресов (от 00000000000 до 11111111111) — это 2^11 комбинаций, то есть 2048 адресов и 8 ячеек памяти на каждый адрес. В сумме это память на 16384 бит (2048 байт,
2 килобайта). С помощью входа OE (output enable), подавая напряжение, можно регулировать — выводить ли на выходы I/O то, что хранится в памяти или нет. С помощью входа WE (write enable), подавая напряжение, при «выключенном» OE, можно сделать из выходов I/O входы для записи в ячейки памяти.
Плата, некий пульт управления памятью, с помощью которой можно менять значения в ячейках и смотреть, что хранится по тому или иному адресу, выглядит вот так:
С помощью DIP-переключателей задается адрес, с помощью диодов выводится значение в ячейке. С помощью перемычек (проводков над диодами) задаются новые значения.
Как отобразить число от 0 до 9 на дисплее мы разобрались. Теперь нужно понять как отобразить трехзначное число (например, 123) на 3 дисплеях. Сложность здесь в том, что на регистр ввода-вывода передается одно 8-битное значение (для 255 это 1111011), а на выходе не 1 дисплей, а 3.
Есть много решений этой задачи, в проекте используется сложный, но менее затратный по ресурсам (нужно меньше чипов). О сложном решении рассказать текстом не просто, поэтому обсудим простое решение.
Для каждой цифры из трехзначного числа — свой отдельный дисплей, а для каждого дисплея — свой отдельный EEPROM. Все адреса EEPROM-ов соединены между собой — это значит, что если на вход в регистр ввода-вывода попадет адрес — он попадет на все EEPROM-ы.
Фишка здесь в том, что каждый из EEPROM-в отображает только часть числа. Первый — первую цифру, второй — вторую, третий — третью. Это достигается за счет того, что каждый из них имеет свою таблицу истинности — различную друг от друга.
На каждый из EEPROM-ов приходит адрес 1111011 (число 123). Первый должен отобразить 1 — значит, в ячейке памяти по адресу 1111011 лежит — 0110000 (значения для дисплея). У второго в памяти лежит — 2 (1101101), у третьего — 3 (1111101).
Счётчик команд
В проекте, как и в современных компьютерах, в оперативной памяти хранятся не только значения, но и инструкции. Инструкции — это команды для компьютера сделать то или иное действие.
Оператор компьютера человек заполняет оперативную память инструкциями — одна инструкция в одной ячейке оперативной памяти, а компьютер выполняет эти инструкции одну за одной — для этого ему нужен счётчик команд.
Какие есть инструкции и как они работают, мы разберем чуть позже — сейчас о порядке выполнения программы:
Как только компьютер подключается к питанию, его надо поставить на паузу через специальную кнопку на плане тактового процессора.
Оперативная память заполняется вручную через DIP-переключатели, связанные с чипами SN74LS173, о которых рассказывалось выше.
Пауза отжимается и компьютер выполняет инструкцию из ячейки памяти по адресу 0000, потом инструкцию 0001, 0002 и так далее.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🔥 Видео
АПС Л19. ШиныСкачать
05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]Скачать
АПС Л8. Однотактный процессор RISC-VСкачать
АПС Л4. Операционные устройстваСкачать
Архитектура ЭВМ Лекция 6: Устройство управления многотактного процессора. Конвейерный тракт данных.Скачать