Балансировочный клапан в тепловом пункте

Авто помощник

Необходимость применения балансировочных клапанов в тепловых узлах в настоящее время не вызывает никакого сомнения. Отсутствие клапанов в ТУ приводит к тому, что гидравлические контуры в тепловых пунктах не увязаны, поэтому в одних нагрузках имеется перерасход горячей воды, а в других – недорасход. Устанавливаемые тепловыми сетями шайбы не позволяют учесть изменяющиеся во времени параметры и оперативно провести наладку теплового узла.

Расход воды, поступающей в тепловой пункт из теплосети, распределяется на отопление, горячее водоснабжение и вентиляцию:

где:
Gd − расчетный расход из тепловой сети в тепловой пункт, кг/ч;
Gh − расход воды на горячее водоснабжение, кг/ч;
Gv − расход воды на вентиляцию, кг/ч;
− расход воды на отопление , кг/ч.

Расход теплоносителя считается по формуле:

G = Q / (t1 – t2)*103

Видео:Гидравлическая балансировка системы теплоснабженияСкачать

Гидравлическая балансировка системы теплоснабжения

где:
Q – расчетная нагрузка на отопление и вентиляцию, Гкал/ч;
t1 и t2− расчетная температура воды в подающем и обратном трубопроводах тепловой сети соответственно, ºС.

При 100% проектном расходе достигается 100 % выход энергии и, соответственно, расчетная температура воздуха в помещении. При недостаточном расходе воды теплоотдача ниже и температура воздуха тоже ниже. Так, при 50 % расходе выход тепловой энергии составляет 80 %, а температура воздуха примерно 14-15 ºС. При перерасходе горячей воды температура воздуха в помещении будет выше расчетной, что приведет к потерям энергии, особенно при открывании форточек. Так, при повышении температуры воздуха на 1 ºС, потери энергии составят 6-8 %. Для того, чтобы температура воздуха в помещении находилась в диапазоне ±1 ºС, расход воды должен лежать в интервале ±10 %. В конечном итоге, смысл гидравлических расчетов и последующей наладки гидравлики состоит в обеспечении проектных расходов теплоносителя, рассчитанных по вышеприведенной формуле.

Соответственно встает задача правильного распределения расходов воды в тепловом пункте в соответствии с проектом. Эта задача легко решается с помощью ручных балансировочных клапанов. Балансировочный клапан – это фактически регулируемая шайба. Меняя положение цифровой ручки, можно изменять пропускную способность клапана или, иными словами, его гидравлическое сопротивление, увязывая контуры между собой. Рассмотрим двухступенчатую схему присоединения водоподогревателей горячего водоснабжения.

На рисунке представлена принципиальная схема с расставленными балансировочными клапанами. В схеме опущены регулирующие клапаны с электроприводом у теплообменника горячего водоснабжения 2-й ступени и теплообменника отопления, насосы, запорная арматура и т.п. На схеме можно выделить пять циркуляционных гидравлических контуров, три первичных и два вторичных. К первичным контурам можно отнести: контур через теплообменники горячего водоснабжение 1-й и 2-й ступеней, контур через калориферы вентиляции, контур через теплообменник отопления. К вторичным контурам системы относятся контур отопления и контур циркуляции горячего водоснабжения. В гидравлическое сопротивление входят сопротивление теплообменников, трубопроводов и арматуры. Естественно, увязка гидравлики представляет собой достаточно сложную задачу, даже с использованием расчетов. При монтаже появляются дополнительные факторы, которые невозможно учесть при расчетах, как, например: сужения, окалина, засоры, замена оборудования и т.п. Гидравлику легче увязывать при проектировании, а затем и наладить расходы с помощью балансировочных клапанов. Клапан 1 необходим для наладки общего расхода в тепловой пункт согласно договора с теплоснабжающей организацией (вместо клапана возможна установка ограничительной шайбы), а также балансировки нескольких тепловых пунктов между собой.

Даже использование одного этого балансировочного клапана позволяет уменьшить расход до проектного и получить значительную экономию энергии. Балансировочный клапан 2 позволяет обеспечить проектный расход через теплообменник 2-й ступени при полностью открытом на нем регулирующем клапане. Балансировочный клапан 3 необходим для наладки расхода через калориферы вентиляции. Клапан 4 необходим для увязки гидравлики через контур теплообменника (элеватора) отопления при полностью открытом регулирующем клапане. Клапан 5 обеспечивает проектный расход в линии циркуляции горячего водоснабжения. Балансировочный клапан 6 позволяет достичь проектного расхода во вторичном контуре системы отопления здания. Он компенсирует избыточный напор циркуляционного насоса.

Читайте также: Газовый клапан vaillant ecotec plus

Установка балансировочных клапанов позволяет оптимизировать работу тепловых пунктов, давая возможность обеспечить проектные расходы во всех нагрузках и, соответственно, их проектную теплоотдачу, а также корректную температуру обратной воды. При этом достигается значительная экономия энергии и увеличение срока службы оборудования.

Влияние автоматических регуляторов на гидравлический режим систем водяного отопления

Видео:Балансировочный клапан VT.054Скачать

Балансировочный клапан VT.054

Окончание. Начало в № 2, 2012

Система отопления с использованием балансировочных клапанов

Система показана на рис. 3. На подающем теплопроводе установлен балансировочный клапан. В этом случае общая характеристика сопротивления, а вместе с ней и потери давления в системе значительно увеличатся из-за того, что балансировочный клапан имеет большие потери давления в своей конструкции. Следовательно, насос на такой системе будет более мощный.

В расчетных условиях (все приборы работают) пропускные способности клапанов у приборов будут находиться в диапазоне 0,23…0,43 (м 3 /ч)/бар 0,5 , а перепады давлений – 1097…2574 Па. Пропускная способность балансировочного клапана будет иметь значение 0,95 (м 3 /ч)/бар 0,5 , а перепад давления – 12262 Па.

Проведем те же операции по разрегулировке системы, что и в первом случае.

При отключении стояка или одного отопительного прибора можно отрегулировать систему. Однако одного балансировочного клапана не будет достаточно, т. к. он не влияет на коэффициенты затекания воды в стояки и приборы, а будет изменять только общую характеристику сопротивления всей системы. Иллюстрация к этому замечанию приведена на рис. 4. Важно отметить, что при отключении первого прибора пропускные способности клапанов у приборов будут находиться в диапазоне 0,21…0,49 (м 3 /ч)/бар 0,5 , а при отключении стояка – 0,20…0,39 (м 3 /ч)/бар 0,5 .

Эти цифры показывают, что отклонение расчетных значений пропускных способностей клапанов меньше относительно первого случая (без применения балансировочного клапана).

Наконец, рассмотрим третий случай (рис. 5). На каждом стояке стоит пара балансировочных клапанов (регулирующий и дублер), соединенных между собой импульсной трубкой, с помощью которой поддерживается постоянный перепад давления на стояке. Принцип работы заключается в том, что данная пара клапанов поддерживает постоянный расход на стояке при постоянном перепаде давления. Регулирующий клапан изменяет свою пропускную способность в зависимости от считываемого значения перепада давления на стояке, тем самым поддерживая постоянный расход. Однако, если учитывать, что характеристика насоса не является линейной (для стандартных насосов), то при одном и том же перепаде давления на стояке расход может быть абсолютно различным. Исследуем эту схему аналогично предыдущим (рис. 4).

Видео:ИТП. Регулятор перепада давления Danfoss. Принцип работы.Скачать

ИТП. Регулятор перепада давления Danfoss. Принцип работы.

Схема системы отопления при использования балансировочного клапана

1 – оборудование теплового пункта; 2 – циркуляционный насос; 3 – отопительный прибор; 4 – отключающий шаровой кран; 5 – термоклапан; 6 – балансировочный клапан

Когда система работает в расчетном режиме, пропускная способность клапанов у приборов находится в диапазоне 0,27…0,46 (м 3 /ч)/бар 0,5 . Пропускная способность дублирующих клапанов неизменна и составляет 1,6 (м 3 /ч)/бар 0,5 . Пропускная способность балансировочного клапана составляет 0,32; 0,275; 0,34 (м 3 /ч)/бар 0,5 для первого, второго и третьего стояка соответственно. Потери давления на трех стояках без учета потерь на балансировочном клапане составляют 1756, 1912 и 1881 Па соответственно. Этот перепад давления будет поддерживаться на каждом стояке при отключении элементов системы отопления.

Характеристики насоса и системы отопления при использовании балансировочного клапана

Sрасч, Sоткл, Sб.к, Sкл+б.к – характеристика сопротивления системы отопления в исходном (расчетном) режиме, при отключении первого стояка без учета регулирующего воздействия, с учетом только воздействия балансировочного клапана, с учетом воздействия клапанов у отопительных приборов и балансировочного клапана соответственно; Gрасч, Gрег – расход теплоносителя системы отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPрасч, ΔPрег – потери давления в системе отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPб.к – потери давления на балансировочном клапане; ΔPкл – дополнительные потери давления в сети, связанные с уменьшением пропускной способности на клапанах у отопительных приборов; ΔPоткл – изменение потерь давления в системе после отключения первого стояка

При отключении первого прибора или стояка на балансировочных клапанах происходит изменение пропускной способности в зависимости от потерь давления на стояке. Однако и здесь для полного регулирования системы следует изменить значения пропускных способностей клапанов у приборов. Они будут находиться в диапазоне 0,29…0,44 (м 3 /ч)/бар 0,5 при отключении прибора и 0,25…0,5 (м 3 /ч)/бар 0,5 при отключении первого стояка. Заметим, что эти значения мало отличаются от расчетных, что говорит об устойчивой работе системы.

Первая система (рис. 2) проста в устройстве, более дешевая, как с точки зрения капитальных затрат, так и эксплуатационных, и, самое главное, способна саморегулироваться. Правда, точность регулирования в таком случае (по отклонению расходов в отопительных приборах) может достигать 8–11 % в связи с тем, что автоматике или человеку довольно сложно точно опустить шпиндель клапана на необходимую глубину. Это обусловлено тем, что при низких значениях пропускной способности ход штока сильно влияет на количество теплоносителя, проходящего через клапан. Эти исследования подробно приведены в [1].

Видео:NexusValve Passim. Автоматический балансировочный клапанСкачать

NexusValve Passim. Автоматический балансировочный клапан

Вторая система (рис. 4) положительна тем, что часть регулирующего воздействия на себя берет балансировочный клапан, а точность регулировки составляет от 7 до 9 %.

Схема системы отопления при использовании пары балансировочных клапанов на каждом стояке
1 – оборудование теплового пункта; 2 – циркуляционный насос; 3 – отопительный прибор; 4 – отключающий шаровой кран; 5 – термоклапан; 6 – балансировочный клапан; 7 – балансировочный клапан постоянного перепада давления; 8 – дублер балансировочного клапана

Сложность регулировки заключается в том, что балансировочный клапан будет обслуживать специалист, хорошо знакомый с гидравликой данной системы, который будет знать, насколько надо увеличить сопротивление на клапане в случае отключения элементов системы отопления. Такой вариант возможен только тогда, когда планово отключаются целые ветви системы отопления.

Третья система (рис. 6) вполне удовлетворяет в плане автоматической регулировки. Почти всю регулирующую способность на себя берут балансировочные клапаны, и точность регулировки достигла в исследованиях условиях 1–3 %. Однако стоимость такой системы будет значительна, будут велики затраты на сервисное обслуживание клапанов, а его еще надо обеспечить, а также из-за значительных потерь давления на клапанах будет большой расход электроэнергии, потребляемой циркуляционными насосами.

Характеристики насоса и системы отопления при использовании балансировочных клапанов на каждом стояке

Sрасч, Sоткл, Sб.к, Sкл+б.к – характеристика, соответственно, сопротивления системы отопления в исходном (расчетном) режиме, при отключении первого стояка без учета регулирующего воздействия, с учетом только воздействия балансировочного клапана, с учетом воздействия клапанов у отопительных приборов и балансировочного клапана; Gрасч, Gрег – расход теплоносителя системы отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPрасч, ΔPрег – потери давления в системе отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPб.к – потери давления в сети, связанные с регулирующим воздействием балансировочных клапанов; ΔPкл– дополнительные потери давления в сети, связанные с уменьшением пропускной способности на клапанах у отопительных приборов; ΔPоткл – изменение потерь давления в системе после отключения первого стояка

Выводы

Основным фактором, влияющим на выбор количества и типа арматуры, является назначение здания и вида его эксплуатации. Например, если это жилое или административное здание, в котором не предусматривается полное длительное отключение целых стояков или ветвей (только в аварийных случаях), то вполне можно применить классический метод увязки колец циркуляции диаметрами труб. Конечно, желательно и даже необходимо у каждого прибора установить термоклапаны, т. к. это будет залогом энергоэффективности системы. А также обеспечит автоматическую регулировку системы и поддержание комфортных условий в каждом помещении.

Видео:Разборка автоматические балансировочные клапаны серии ASVСкачать

Разборка автоматические балансировочные клапаны серии ASV

Однако, если провести качественный гидравлический расчет системы, то можно обойтись и без регуляторов. Нужно при этом установить клапаны с определенной пропускной способностью и зафиксировать ее. Тогда комфорт будет достигнут тогда, когда вся система отопления полностью задействована.

Если проектируется система отопления в здании, например, гостиницы, где регулирование теплоотдачи прибора является одной из важных составляющих достижения комфорта, или, например, фитнес-центра, где спортзалы могут полностью отключаться, то очень важно учесть разрегулировочное воздействие системы. Могут отключаться не только отдельные приборы в отдельных помещениях, но и целые стояки, ветви, корпуса. В таком случае можно предложить два способа регулирования.

Первый способ применим, если этажность и протяженность здания довольно велика, здание имеет много корпусов, а регулирования невозможно достичь только за счет клапанов у приборов, то можно установить достаточное количество регулирующей арматуры и автоматики на всей системе отопления. При любом разрегулировочном воздействии на систему будет восстановлен необходимый расход на каждом приборе.

Этот способ имеет ряд положительных качеств, таких как упрощенный гидравлический расчет, точное регулирование системы при различных воздействиях, пониженный расход металла и возможность организовать один мощный тепловой пункт в большом здании, а систему отопления сделать более протяженной.

Минусы первого способа будут существенными: завышенный расход электроэнергии, необходимость обслуживания системы, меньшая надежность всех элементов, высокие капитальные затраты на регулирующую арматуру. Также важно заметить, что необходимо соблюдать жесткие требования к качеству воды. Регулирующая арматура имеет элементы, имеющие низкие сечения для прохода воды, поэтому если на них будут осаждаться загрязнения, то они быстро выйдут из строя.

Второй способ предлагает разбить систему отопления на несколько систем, провести качественный гидравлический расчет и обеспечить регулирование только за счет клапанов у приборов. Таким образов, при необходимости можно отключить целую систему отопления, что никак не повлияет на работу остальных систем.

У этого способа имеются минусы: повышенная металлоемкость, возможно, будет необходима установка нескольких тепловых пунктов (для больших зданий) и более сложный гидравлический расчет.

Видео:Для чего нужны балансировочные (настроечные) клапаны в системе отопления? - ответ от эксперта ValtecСкачать

Для чего нужны балансировочные (настроечные) клапаны в системе отопления? - ответ от эксперта Valtec

Однако такая система имеет множество плюсов. Насосы в такой системе будут менее мощными, а значит и расход электроэнергии на них будет значительно меньше, чем в первом способе. Будет повышена надежность системы, т. к. она состоит из меньшего числа элементов, которые могут выйти из строя. И, наконец, удешевление системы за счет сокращения количества дорогой арматуры.

Если система отопления небольшая и здание имеет небольшую протяженность и этажность, то необходимо проводить качественный гидравлический расчет с увязкой каждого кольца и проведение анализа работы системы.

Каким бы не было решение при выборе различных методов конструирования системы отопления проектировщик должен помнить несколько принципов:

  • проект должен быть экономичным, как с точки зрения капитальных затрат, так и с точки зрения эксплуатационных;
  • проектируемая система отопления должна быть проста и удобна в монтаже, быть надежной и ремонтопригодной;
  • должны быть хорошо продуманы и проверены расчетом возможные изменения гидравлики системы при расчетном и эксплуатационных режимах;

При выполнении этих требований проект будет по-настоящему качественен, а система отопления – долговечной и удобной в эксплуатации.

🎦 Видео

Ручные балансировочные клапаны Danfoss. Гидравлическая балансировка инженерных системСкачать

Ручные балансировочные клапаны Danfoss. Гидравлическая балансировка инженерных систем

Как работает элеваторный узел отопления / How does the Elevator unit heatingСкачать

Как работает элеваторный узел отопления / How does the Elevator unit heating

Клапан настроечный – зачем нужен и где устанавливается?Скачать

Клапан настроечный – зачем нужен и где устанавливается?

БАЛАНСИРОВОЧНЫЙ КЛАПАНСкачать

БАЛАНСИРОВОЧНЫЙ КЛАПАН

Обзор существующего ИТП с теплообменниками отопления и ГВССкачать

Обзор существующего ИТП с теплообменниками отопления и ГВС

как настроить автоматический балансировочный клапан ASV-PV, DanfossСкачать

как настроить автоматический балансировочный клапан ASV-PV, Danfoss

Ручные балансировочные клапаны - мастер-классСкачать

Ручные балансировочные клапаны - мастер-класс

Как устроено ГВС в многоэтажкеСкачать

Как устроено ГВС в многоэтажке

Автоматический балансировочный клапан Danfoss серии APT. Обзор, технические характеристикиСкачать

Автоматический балансировочный клапан Danfoss серии APT. Обзор, технические характеристики

Индивидуальный тепловой пункт. Как это работает.Скачать

Индивидуальный тепловой пункт. Как это работает.

Как настроить регулятор перепада давления по расходу?Скачать

Как настроить регулятор перепада давления по расходу?

ИТП. Клапан с электроприводом Danfoss. Принцип работы.Скачать

ИТП. Клапан с электроприводом Danfoss. Принцип работы.

Автоматические балансировочные клапаны Danfoss ASV – как это работает и чем это вам выгодноСкачать

Автоматические балансировочные клапаны Danfoss ASV – как это работает и чем это вам выгодно

Из чего состоит тепловой пункт? Обзор на примере ЖК Атмосфера г. Самара.Скачать

Из чего состоит тепловой пункт? Обзор на примере ЖК Атмосфера г. Самара.
Поделиться или сохранить к себе:
Технарь знаток