Бесконечно длинный цилиндр заряжен по объему

Авто помощник

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Видео:ЧК_МИФ_ФМЛ_30 _ 3_1_4_7 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ЦИЛИНДРАСкачать

ЧК_МИФ_ФМЛ_30 _ 3_1_4_7  (L2)   ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ЦИЛИНДРА

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

Бесконечно длинный цилиндр заряжен по объему
Рис. 2.11Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток ФЕ через боковую часть поверхности цилиндра равен нулю, т.к . Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Видео:Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.Скачать

Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.

Вне плоскостей напряженность поля

Бесконечно длинный цилиндр заряжен по объему

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. , то

Это формула для расчета пондермоторной силы.

Видео:Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)Скачать

Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)

Читайте также: Линия пересечения двух цилиндров под прямым углом

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Бесконечно длинный цилиндр заряжен по объему

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

Видео:Урок 224. Напряженность поля неточечных зарядовСкачать

Урок 224. Напряженность поля неточечных зарядов

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Бесконечно длинный цилиндр заряжен по объему

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16) .

Бесконечно длинный цилиндр заряжен по объему

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Видео:3.22Скачать

3.22

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:

Читайте также: Ферромагнит в цилиндре игрушка

Бесконечно длинный цилиндр заряжен по объему

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Видео:Поле равномерно заряженного цилиндраСкачать

Поле равномерно заряженного цилиндра

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при сферическая поверхность будет содержать в себе заряд, равный

где ρ – объемная плотность заряда, равная: ; – объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара

📸 Видео

43. Применение теоремы ГауссаСкачать

43. Применение теоремы Гаусса

Консультация №7 по теореме Гаусса.Скачать

Консультация №7 по теореме Гаусса.

Лекция 4-4 Теорема Гаусса в дифференциальной формеСкачать

Лекция 4-4 Теорема Гаусса в дифференциальной форме

Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.Скачать

Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.

Бесконечная заряженная плоскость [Физзадачи #1]Скачать

Бесконечная заряженная плоскость [Физзадачи #1]

ЧК_МИФ_ФМЛ_30 _ 3_1_4_4 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ШАРАСкачать

ЧК_МИФ_ФМЛ_30 _ 3_1_4_4  (L2)   ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ШАРА

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Поле заряженной нитиСкачать

Поле заряженной нити

ЧК_МИФ /ЛИКБЕЗ/ 3_1_4 Теорема Гаусса ( Задача на поле цилингдрически симмтеричного распределения)Скачать

ЧК_МИФ /ЛИКБЕЗ/  3_1_4 Теорема Гаусса ( Задача на  поле цилингдрически симмтеричного распределения)

Электростатика | электрическое поле бесконечной плоскостиСкачать

Электростатика | электрическое поле бесконечной плоскости

Примеры применения теоремы Гаусса 2021 1Скачать

Примеры применения теоремы Гаусса      2021 1

Цилиндр крутится - вихревое электрическое поле мутится? | Олимп | Дикая ботва №2Скачать

Цилиндр крутится - вихревое электрическое поле мутится? | Олимп | Дикая ботва №2

Лекция 11 Потенциал электростатического поляСкачать

Лекция 11 Потенциал электростатического поля

ЭЛЕКТРОСТАТИКА.Задачи на применение теоремы Гаусса. 2022-2Скачать

ЭЛЕКТРОСТАТИКА.Задачи на применение теоремы Гаусса. 2022-2
Поделиться или сохранить к себе:
Технарь знаток