Буфер для can шины

Texas Instruments ISO1042 ISO105 SN6505 TPS76350

Буфер для can шины

Используемые во многих системах для коммуникационных целей интерфейсы CAN уязвимы для высоковольтных бросков напряжения. Однако некоторые устройства могут помочь защититься от этих проблем.

CAN (Controller Area Network – сеть контроллеров) – это очень популярная последовательная шина, широко используемая в автомобилях, средствах промышленной автоматизации и других промышленных приложениях. Более новая усовершенствованная версия, названная CAN-FD (гибкая скорость передачи данных), обеспечивает более высокие скорости и другие улучшения.

Как обнаружили многие разработчики, CAN часто требует электрической изоляции между узлами и защиты от высоковольтных выбросов, которые регулярно происходят в автомобильном и промышленном оборудовании. Некоторые из недавно анонсированных приемопередатчиков CAN теперь поддерживают последнюю спецификацию CAN-FD, и, кроме того, имеют необходимую изоляцию. Решения для защиты могут также быть основаны на внешних дискретных компонентах, подключаемых к шине.

Видео:Для чего служит CAN-шина в сигнализацииСкачать

Для чего служит CAN-шина в сигнализации

Знакомство с CAN

CAN – это стандарт последовательного интерфейса, разработанный компанией Robert Bosch и одобренный Собществом автомобильных инженеров (SAE) еще в 1980-х годах. С тех пор, благодаря своей гибкости и надежности, он стал широко использоваться в транспортных средствах и многих промышленных приложениях. Топология интерфейса представляет собой дифференциальную шину с экранированной или неэкранированной витой парой, к которой может быть подключено до 127 узлов. Все узлы являются приемопередатчиками, способными посылать и получать данные. Выпускаются стандартные микросхемы приемопередатчиков, но многие микроконтроллеры имеют интегрированный интерфейс CAN (Рисунок 1).

Рисунок 1.Топология шины CAN, к которой подключены микроконтроллер с интерфейсом
CAN и другие приемопередающие узлы.

Данные передаются кадрами, состоящими из 8 байт данных, адресного поля, поля контрольной суммы CRC и других служебных полей. Скорость передачи данных не фиксирована и, начинаясь с 5 кбит/с, может достигать 1 Мбит/с. Максимальная длина шины при скорости 1 Мбит/с равна 40 м. Используется множественный доступ к шине с прослушиванием несущей и обнаружением коллизий (CSMA/CD). CAN имеет ряд разновидностей, таких как CAN-FD, CANopen и SAE J1939. Используются также обозначения ISO-11898 и ISO-11519, присвоенные Международной организацией по стандартизации (ISO).

CAN-FD (ISO-11898-1) – это новейшая версия, которая увеличивает скорость передачи данных до 5 Мбит/с и выше, что делает систему более адаптированной к приложениям реального времени, требующим более низкой задержки и большего детерминизма. Кадр большего размера теперь вмещает 64 байта данных.

Видео:Трансиверы CAN шины TJA1050, MCP2551 как альтернатива RS485Скачать

Трансиверы CAN шины TJA1050, MCP2551 как альтернатива RS485

Необходимость изоляции

Помимо широкого распространения в автомобильных приложениях, интерфейс CAN используется в системах промышленной автоматизации, драйверах двигателей переменного и постоянного тока, каналах обмена ПЛК, источниках питания телекоммуникационного оборудования, системах отопления и кондиционирования, лифтах, солнечных инверторах и зарядных станциях электрических автомобилей. В некоторых случаях в оборудовании имеются низко- и высоковольтные сегменты, которые должны быть изолированы друг от друга, чтобы защитить низковольтные компоненты от повреждения.

Высоковольтные двигатели, коммутаторы, источники питания и другое оборудование могут генерировать помехи амплитудой в сотни и тысячи вольт. Высоковольтный сигнал, попадающий в низковольтную подсистему, потенциально может уничтожить микроконтроллер. Способом решения этой проблемы является использование изолированных приемопередатчиков и отдельных источников питания с их собственными возвратными землями.

Видео:MCP2515, контроллер CAN шины с интерфейсом SPIСкачать

MCP2515, контроллер CAN шины с интерфейсом SPI

Изоляция

В современных системах CAN необходимо изолировать как сигналы, так и питание. Изоляция реализуется в приемопередатчике, но ее эффект пропадет, если блоки питания по разные стороны изолирующего барьера будут просто соединены друг с другом.

Во многих новых приемопередатчиках CAN используется емкостная изоляция между входами и выходами данных и цепями подключения шины. Два слоя двуокиси кремния образуют два последовательно соединенных конденсатора, через которые передаются данные между схемами, расположенными на двух разных кристаллах, соединенных внутри корпуса.

Примером может служить ISO1042 – выпущенный компанией Texas Instruments новый изолированный приемопередатчик CAN, обеспечивающий емкостную изоляцию и защиту практически любых промышленных и автомобильных конструкций. Устройство, отвечающее требованиям стандартов физического уровня ISO 11898-2 и ISO 11898-5, поддерживает стандарты CAN до 1 Мбит/с и CAN-FD до 5 Мбит/с. Защита шины выдерживает напряжения ±70 В и синфазные напряжения ±30 В. Диапазон напряжений питания составляет от 1.7 В до 5.5 В. Поддерживаются логические уровни 1.8, 2.5, 3.3 и 5.0 В. Микросхема ISO1042 выпускается в корпусах SOIC-8 или SOIC-16.

Реализация разделенного источника обеспечивает дополнительный уровень изоляции. Один из подходов с использованием устройства Texas Instruments показан на Рисунке 2. Микросхема генератора/драйвера SN6505 формирует 100-килогерцовый сигнал для трансформатора, выходное напряжение которого, преобразованное до требуемого уровня, затем выпрямляется и фильтруется. Трансформатор обеспечивает необходимую изоляцию питания. Отфильтрованное напряжение стабилизируется LDO регулятором (таким, скажем, как TPS76350) и питает приемопередатчик CAN. Узловые приемопередатчики и выводы интерфейса CAN микроконтроллера подключаются к шине через дифференциальные линии CANL и CANH.

Рисунок 2.Так выглядит изолированный узел CAN с изолированным источником питания
и изолированным приемопередатчиком.

Для упрощения процесса проектирования изолированных подсистем CAN и изоляции сигналов и питания CAN выпускаются различные устройства, как дискретные, так и интегральные.

Читайте также: Мерседес амг давление в шинах

Видео:CAN шина👏 Как это работаетСкачать

CAN шина👏 Как это работает

Защита шины CAN

Изолированные системы обеспечивают нормальную защиту микросхем. Однако в некоторых условиях могут возникать проблемы электростатических разрядов (ESD), высокий уровень которых способен повредить приемопередатчик. По этой причине шина должна быть каким-то образом защищена. При этом крайне важно, чтобы выбранное устройство защиты интерфейса было совместимо с приемопередатчиком.

Наилучшим решением для защиты является использование супрессоров (TVS-диодов), подключенных между каждой линией шины и землей (Рисунок 2). Эти диоды фактически представляют собой два встречно включенных стабилитрона с высоким пробивным напряжением. Максимально допустимое напряжение на выводах приемопередатчиков зависит от типа микросхемы.

Приемопередатчик ISO105 компании TI выдерживает напряжения в диапазоне от −27 В до +40 В. ISO1042 рассчитан на броски напряжения до ±70 В. Максимальное пробивное напряжение супрессоров должно быть меньше этих значений, но больше рабочего напряжения сигналов на шине. Обычно два логических уровня шины составляют менее половины напряжения питания «0» и напряжения питания «1».

Не забывайте, что добавление TVS-диодов обеспечивает защиту от ESD, но одновременно добавляет к шине емкость, ограничивающую верхние скорости передачи данных. Необходимо, чтобы дополнительная емкость была меньше 50 пФ.

Видео:лекция 403 CAN шина- введениеСкачать

лекция 403  CAN шина- введение

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Видео:CAN блоки в магнитолах Android или CAN шина в автомобиле ВОПРОС/ОТВЕТСкачать

CAN блоки в магнитолах Android или CAN шина в автомобиле ВОПРОС/ОТВЕТ

CAN sniffer

Видео:Прошивка can шины на Приоре-2 + установка альтменюСкачать

Прошивка can шины на Приоре-2 + установка альтменю

CAN шина

Описывать технические подробности CAN шины в деталях — удел документации. В данной статье достаточно знать, что она:

  • имеет двухпроводное физическое подключение
  • бывают различные скорости передачи данных
  • для подключения уже имеются готовые микросхемы и даже готовые платы с распаянными деталями

Полистав странички одного известного интернет магазина из поднебесной, я заказал несколько различных вариантов шилдов и пошёл изучать особенности электрических сигналов в автомобиле. Подопытным автомобилем выступил LADA Kalina Cross с 127-ым мотором и электронным блоком управления ИТЭЛМА М74.5 CAN.

Подключаюсь в диагностический разъём OBD (контакты 6 и 14) и смотрю осциллографом, что там имеется. После поворота ключа зажигания начинают бегать пакеты с амплитудой до 2,5 В. Ставлю паузу на осциллографе и смотрю на пакет.

Буфер для can шины

Заметны стартовые и стоповые биты, какие-то данные в пакете. На тот момент я уже знал, что скорость передачи данных ожидается 500 кбит/с, как наиболее частая для моторной CAN шины. Длительность пакета получается около 230 мкс и перед пакетом наблюдается довольно большая пауза в передаче данных. Масштабирую время и вижу три пакета и паузы между ними.

Буфер для can шины

Если сложить длительность передачи данных и паузу между пакетам получается, что передача одной порции данных занимает около 1 мс.

К чему я это всё вывожу? А вопрос чисто практический: хватит ли скорости последовательного порта для передачи всех данных? И исходя из увиденного, можно сделать вывод, что скорость 500 кбит/с развивается внутри пакета, который занимает примерно четверть времени на передачу. Значит средняя скорость передачи будет вчетверо меньшей. На тот момент я ещё не располагал тестами скорости последовательного интерфейса Arduino и забегая вперёд скажу, что даже с самым распространённым преобразователем Serial to USB CH340 стабильно работает скорость в 2 Мбит/с.

Видео:STM32 CAN шина. Часть 1. Настройка и странности HALСкачать

STM32 CAN шина. Часть 1. Настройка и странности HAL

CAN scanner на Arduino

Первый прибыл шилд для классической Arduino UNO. Да он стоит значительно дороже своих более мелких собратьев, но он имеет на борту всё необходимое и даже две кнопки.

Буфер для can шины

Именно с ним я и начал все эксперименты. Собрал простую схему с этим шилдом и жидкокристаллическим двухстрочным экраном. Цель была — вывести на экран хоть какие-то данные. Перебирал различные библиотеки для работы с CAN шиной на Arduino (сразу скажу, что правильная и рабочая библиотека называется CAN-BUS Shield by Seeed Studio с заголовочным файлом mcp_can.h), поменял кварцевый резонатор на шилде на 16 МГц (изначально стоял 8 МГц) — данных не было.

На шилде установлены две микросхемы: контроллер CAN шины MCP2515 и драйвер CAN шины TJA1050. Почитав документацию и различные форумы, решил поменять TJA1050 на более каноничный драйвер MCP2551 и данные появились. Возможно TJA1050 была изначально неисправна, так как с её подключением двумя проводками ошибиться было очень сложно, к тому же я использовал OBD и DB9 разъёмы для подключения.

За пару часов был написан простой CAN scanner, который выводил на жидкокристаллический дисплей номер захваченного пакета, его ID и до 8 байтов данных этого пакета.

Буфер для can шины

Вот тут и пригодились кнопочки на шилде, которыми я реализовал переключение между номером отображаемого пакета.

Начало было положено, надо переходить к более интересной реализации.

Видео:поиск нерабочей can шины, часть дваСкачать

поиск нерабочей can шины, часть два

CAN sniffer на Arduino

Задача стояла достаточно простая:

  • принимаем пакет из CAN шины
  • укладываем полученные данные в свою структуру
  • отправляем структуру через последовательный порт

С первыми двумя задачами я вообще не видел никаких проблем. Библиотека предоставляла прерывание при приёме очередного пакета данных и удобные функции для получения данных. А вот отправку данных в сторону компьютера решил сделать через библиотеку CyberLib, которая устраняет некоторые накладные расходы всей платформы Arduino, за счёт чего можно немного разгрузить процессор для обработки данных. Позже от этой библиотеки пришлось отказаться.

Читайте также: Что такое 106t шина

Для того, чтобы отправляемые данные корректно обрабатывались на стороне компьютера, перед каждой очередной порцией данных в поток вставляется префикс из четырёх байтов 0xAA55AA55 (почему-то вспомнились эти байты по последним двум байтам загрузочного сектора DOS, только они там были в другом порядке). Логика такая:

  • компьютер читает весь поток из последовательного порта и находит в нём искомую последовательность префикса 0xAA55AA55
  • сразу после префикса будут 4 байта идентификатора пакета
  • далее длина данных этого пакета, по ней контролируется длина всего пакета
  • до 8 байтов данных

На этом программная часть в Arduino, на тот момент, была завершена. Позже она была значительно переделана, но общая концепция не поменялась.

Так же я написал простой генератор пакетов данных для отладки, чтобы отлаживаться дома — он просто отправляет в последовательный порт пакеты со случайными данными, что позволяет отлаживать приложение на компьютере в комфортных условиях.

Примерно в это же время прибыли более миниатюрные компоненты Arduino Nano и Mini CAN shield.

Буфер для can шины

Я спроектировал небольшой корпус, распечатал его и разместил внутри все компоненты.

Буфер для can шины

Снаружи с одной стороны OBD разъём, с другой — Mini USB. Внутри имеется переключатель для терминирующего резистора.

Видео:Блокировка can-шины в фаре Toyota/Lexus. Шок для опытных установщиков. Зачем думать и читать схемыСкачать

Блокировка can-шины в фаре Toyota/Lexus. Шок для опытных установщиков. Зачем думать и читать схемы

CAN sniffer на PC с использованием wxWidgets

Набросал простую заготовку программы на C#, которая выводит в Grid получаемые данные. И пошёл проверять в автомобиль. Только пошёл не со своим ноутбуком, так как у него батарея давно приказала долго жить и использовался он как стационарный компьютер, а взял нетбук с очень слабым процессором. То что я увидел… Я ничего не увидел. Оба ядра загружены на 100%, интерфейс приложения не реагирует. Но на моём компьютере, который всё-таки значительно шустрее нетбука, с генератором случайных пакетов приложение нормально работало и отображало данные. Из этого я сделал вывод, что платформа .NET на слабых компьютерах мне не подойдёт, так как отлаживаться в полевых условиях я мог на тот момент только с тем нетбуком.

Ранее я в нескольких проектах использовал библиотеку wxWidgets и о ней у меня только приятные впечатления. Она легковесная, нет необходимости тащить с собой различные библиотеки и даже кросс-платформенная, что вселяет надежду, что интерфейсную часть кода можно перенести без значительных переделок на другие платформы. В конце статьи будет ссылка на скомпилированную программу, если возиться со всем этим не будет желания.

Можно скачать и посмотреть видео (менее восьми минут), а можно выполнить 6 шагов по описанию ниже.

Установка и компиляция wxWidgets:

1. Скачать и установить wxWidgets если это установщик, либо распаковать, если это архив

2. Создать переменную окружения WXWIN указывающую на папку, куда установили или распаковали (например C:\wxWidgets):

Свойства системы -> Дополнительные параметры системы -> Переменные среды -> Создать
WXWIN = C:\wxWidgets

3. Из папки C:\wxWidgets\build\msw открыть файл решения под соответствующую Visual Studio (wx_vc16.sln для Visual Studio 2019)

4. В Solution Expolorer, с помощью клавиши Shift, выделить все проекты, кроме _custom_build и зайти в Properties проектов.

5. В разделе C/C++ -> Code Generation изменить параметр Runtime Library:

Для конфигурации Debug выбрать /MTd
Для конфигурации Release выбрать /MT

6. Скомпилировать библиотеки wxWidgets по очереди для Debug и Release конфигураций.

Пробное приложение и настройка проекта в Visual Studio (для проверки)

1. В Visual Studio создать Empty Project с указанием типа приложения Desktop Application (.exe)

2. В окне View -> Property Manager для своего проекта правой кнопкой выбрать меню Add existing property sheet… и выбрать файл:

3. Создать файл main.cpp и скопировать в него содержимое файла:

4. В настройках проекта C/C++ -> Code Generation изменить (если пункт не появился — сделать пробную сборку):

Runtime Library для конфигурации Debug: /MTd
Runtime Library для конфигурации Release: /MT

5. Дополнительно, если необходимы привилегии UAC, в разделе Linker -> Manifest File:

UAC Execution Level: requireAdministrator

6. Для добавления иконки exe-файлу надо добавить ресурсный файл со следующим содержимым:

#include «wx\msw\wx.rc»
wxicon icon app_icon.ico

Первый реализованный прототип на C++ и wxWidgets показал, что даже нетбук справляется с отображением данных в таблице и я приступил к разработке задуманного.

Архитектурно программа состоит из двух потоков: интерфейсный и поток работы с последовательным портом. Никаких невероятно интересных алгоритмов не применялось. Код обильно снабжён комментариями и должен быть довольно понятен. Ссылка на исходники будет в конце статьи.

Первое что было сделано — раскраска ячеек данных в таблице по давности получения этих данных. Уже в первом прототипе, глядя на 17 строк данных меняющихся непрерывно значений, я понял, что надо как-то различать свежие данные и данные, которые не изменяются или меняется редко. Сделал раскраску в два этапа:

  • впервые пришедшие данные выделяются зелёным цветом фона ячеек
  • данные пришедшие повторно и далее — выделяются красным фоном, который постепенно выцветает до белого если больше эти данные не меняются

Читайте также: Зимние шины r18 235 55 triangle tr797

Сразу же стало наглядно видно, какие ячейки вообще не используются, какие содержат сигналы счётчиков. Поиск же интересующих изменяющихся значений значительно упрощается. Здесь и далее все изображения анимированные. Если анимация не работает в статье (на некоторых мобильных браузерах) — кликайте по изображению для открытия полной версии анимации.

Далее мне захотелось всё-таки проверить, справляется ли последовательный порт с потоком данных. Для этого я на стороне Arduino добавил счётчики количества принятых пакетов и счетчик байтов в пакете. Эти счётчики отправляются на компьютер в пакете с идентификатором 0x000. Программа при получении этих данных не выводит их в таблицу, а отображает в отдельных информационных полях сверху. Полученные результаты даже весьма понравились. В среднем принимается до 750 пакетов/с со скоростью до 9,5 кБ/с, а это где в районе до 80 кбит/с, что вполне по силам последовательному порту. Но всё равно, обмен данными настроен по умолчанию на 500 кбит/с, пусть лучше будет запас.

Добавление возможности записи данных в журнал появилось после того, как подключил параллельно к OBD интерфейсу диагностический адаптер ELM327 и связав его с телефоном, попробовал читать различные данные. Данные пробегали настолько быстро, что увидеть их невозможно. Записав всё это в журнал, можно потом спокойно сесть и посмотреть передаваемые данные. Для этого в журнал могут записываться даже ASCII текстовые данные. Так же можно выбирать тип файла, символ разделитель и настроить фильтр пакетов кликом в таблице по указанному идентификатору пакета и нажатию кнопки «Добавить ID в фильтр» (по умолчанию записываются все данные), если запись всех данных избыточна.

Именно тогда пришло осознание, что все приложения для телефона, которые производят всякую «диагностику» через связку ELM327 и телефон, не общаются напрямую с CAN шиной автомобиля. Они всего лишь используют функционал диагностики OBD через CAN шину посредством обращения к CAN ID 0x7E0. Обычно это адрес контроллера мотора (ЭБУ), ответ же от него приходит в пакете с идентификатором 0x7E8. А вот все остальные пакеты данных — это так называемый Vendor Specific и ни один производитель так просто их не раскроет (хотя есть пример: Ford выпустил SDK для своих автомобилей).

Продолжая изучать что же передаётся в этих пакетах пришёл к ещё одной идее: при клике на ячейку в таблице, в окне программы справа выводить двоичное и десятичное значение этого байта, а так же брать следующий байт и дополнять до слова. Далее это слово умножать на некий коэффициент и получить десятичный результат. Звучит не очень понятно, но вот в связи с чем это делалось: обороты мотора приходят в пакете CAN ID 0x180, в первых двух байтах. Эти два байта дают некое слово, которое пропорционально оборотам. Если значение этого слова разделить на 8, то получатся текущие обороты. Поэтому указывается множитель 0,125, как обратная величина от 8. Далее это слово визуализируется в графике с динамической подстройкой по амплитуде. В принципе, множитель можно искать в обратной последовательности: нашёл ячейки, которые по графику очень похожи на обороты мотора или ещё что-то искомое, после чего подгоняется множитель для получения действительных значений.

Ну а двоичное представление позволяет искать различные битовые индикаторы. Например поиск индикаторов указателей поворота сводится к тому, чтобы включить их и наблюдать какая ячейка начинает изменяться, в примере ниже это CAN ID 0x481 байт 2. После чего клик по ячейке приводит к отображению её двоичного значения в соответствующем поле, где уже видны переключающиеся младшие два бита (левый, правый и если вместе — аварийная сигнализация).

И напоследок мне понадобилось сделать отправку некоторых управляющих данных в CAN шину и посмотреть реакцию на эти команды. В программу на Arduino был добавлен код, который принимает данные со стороны компьютера и передаёт в CAN шину. Именно на этом этапе пришлось отказаться от CyberLib, так как у неё не было поддержки прерывания поступления данных в буфер последовательного порта. В программе на компьютере добавил несколько текстовых полей, в которые можно ввести различные параметры и таблицу для просмотра ответа исполнительного устройства. В примере ниже показаны команды управления включить/отключить первую скорость вентилятора охлаждения (0x0A) и включить/отключить муфту кондиционера (0x0B).

Практически нигде не найти полные расшифровки данных производителей, тем более официальных. В лучшем случае это будут чьи-то изыскания в рамках реализации какой-то дополнительной функции. CAN sniffer может помочь в поиске этих данных. Я смог найти порядка 40 различных параметров автомобиля и ради эксперимента, на базе полученных данных, я сделал собственное управление вентилятором охлаждения.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    📹 Видео

    Вебинар: Как найти любые данные из CAN-шины любого автомобиля?Скачать

    Вебинар: Как найти любые данные из CAN-шины любого автомобиля?

    Подробно про CAN шинуСкачать

    Подробно про CAN шину

    Универсальная плата CAN шиныСкачать

    Универсальная плата CAN шины

    Поиск уровня топлива в CAN шине Toyota Camry 2017Скачать

    Поиск уровня топлива в CAN шине Toyota Camry 2017

    Компьютерная диагностика авто. K-линия и CAN шинаСкачать

    Компьютерная диагностика авто. K-линия и CAN шина

    тестирование разветвителя CAN-шиныСкачать

    тестирование разветвителя CAN-шины

    Универсальный CAN адаптер MFD207CAN-UN (часть 2)Скачать

    Универсальный CAN адаптер MFD207CAN-UN (часть 2)

    Защита CAN шины автомобиляСкачать

    Защита CAN шины автомобиля

    Мерседес разьем CAN шины, как выглядит и где?Скачать

    Мерседес разьем CAN шины, как выглядит и где?

    Магия CAN-шиныСкачать

    Магия CAN-шины
Поделиться или сохранить к себе:
Технарь знаток