Функция клапанов сердца изложена в наших статьях раздела физиология челока, где подчеркивается, что звуки, слышимые ухом, возникают при захлопывании клапанов. И наоборот, когда клапаны открываются, звуки не слышны. В данной статье мы прежде всего обсудим причины возникновения звуков во время работы сердца в нормальных и патологических условиях. Затем дадим объяснение тем гемодинамическим сдвигам, которые возникают вследствие нарушения функции клапанов, а также при врожденных пороках сердца.
При выслушивании стетоскопом здорового сердца обычно слышны звуки, которые можно описать как «бу, туп, бу, туп». Сочетание звуков «бу» характеризует звук, возникающий при закрытии атриовентрикулярных клапанов в самом начале систолы желудочков, который называют первым тоном сердца. Сочетание звуков «туп» характеризует звук, возникающий при закрытии полулунных клапанов аорты и легочной артерии в самом конце систолы (в начале диастолы) желудочков, который называют вторым тоном сердца.
а) Причины возникновения первого и второго тонов сердца. Самым простым объяснением возникновения тонов сердца является следующее: створки клапанов «схлопываются», и появляется вибрация или дрожание клапанов. Однако этот эффект незначительный, т.к. кровь, находящаяся между створками клапанов в момент их захлопывания, сглаживает их механическое взаимодействие и предотвращает возникновение громких звуков. Главной причиной появления звука является вибрация плотно натянутых клапанов сразу после их захлопывания, а также вибрация прилегающих участков стенки сердца и крупных сосудов, расположенных вблизи сердца.
Так, формирование первого тона можно описать следующим образом: сокращение желудочков первоначально вызывает обратный ток крови в предсердия к месту расположения А-В клапанов (митрального и трехстворчатого). Клапаны захлопываются и выгибаются в сторону предсердий, пока натяжение сухожильных нитей не остановит это движение. Эластическое напряжение сухожильных нитей и створок клапанов отражает поток крови и направляет его опять в сторону желудочков. При этом создается вибрация стенки желудочков, плотно закрытых клапанов, а также вибрация и турбулентные завихрения в крови. Вибрация распространяется по прилежащим тканям к грудной стенке, где с помощью стетоскопа эти колебания можно услышать как первый тон сердца.
Второй тон сердца возникает в результате захлопывания полулунных клапанов в конце систолы желудочков. Когда полулунные клапаны захлопываются, они под напором крови прогибаются в сторону же лудочков и натягиваются, а затем в силу эластической отдачи резко смещаются обратно в сторону артерий. Это вызывает кратковременное турбулентное движение крови между стенкой артерии и полулунными клапанами, а также между клапанами и стенкой желудочка. Возникшая вибрация распространяется затем вдоль артериального сосуда по окружающим тканям вплоть до грудной стенки, где можно выслушать второй тон сердца.
Амплитуда звуковых колебаний различной частоты в составе тонов и шумов сердца относительно порога слышимости. Диапазон частоты слышимых звуков от 40 до 520 Гц
б) Высота и продолжительность первого и второго тонов сердца. Продолжительность каждого из тонов сердца едва превышает 0,10 сек: продолжительность первого составляет 0,14 сек, а второго — 0,11 сек. Продолжительность второго тона короче, т.к. полулунные клапаны имеют большее упругое натяжение, чем А-В клапаны; их вибрация продолжается в течение короткого периода времени.
Частотные характеристики (или высота) тонов сердца показана на рисунке выше. Спектр звуковых колебаний включает самые низкочастотные звуки, едва превышающие предел слышимости — примерно 40 колебаний в секунду (40 Гц), а также звуки частотой до 500 Гц. Регистрация тонов сердца с помощью специальной электронной аппаратуры показала, что большая часть звуковых колебаний имеет частоту, лежащую ниже порога слышимости: от 3-4 Гц и до 20 Гц, как показано на рисунке выше в виде области, закрашенной светло-розовым цветом. По этой причине большая часть звуковых колебаний, составляющих тоны сердца, не слышны в стетоскоп, а могут быть зарегистрированы только в виде фонокардиограммы.
Читайте также: Клапан для ручного насоса автомобиля
Второй тон сердца в норме состоит из звуковых колебаний большей частоты, чем первый тон. Причинами этого являются: (1) большее упругое натяжение полулунных клапанов по сравнению с А-В клапанами; (2) более высокий коэффициент упругости у стенок артериальных сосудов, формирующих звуковые колебания второго тона, чем у стенок желудочков, формирующих звуковые колебания первого тона сердца. Эти особенности используют клиницисты для различения первого и второго тонов сердца при выслушивании.
Третий тон сердца. Иногда в начале средней трети диастолы желудочков выслушивается слабый и низкий третий тон. Логическим, но не доказанным объяснением появления третьего тона является беспорядочное движение крови в полости желудочков, возникающее при быстром поступлении крови из предсердий. Этот процесс можно сравнить с заполнением бумажного пакета быстро текущей водой из водопроводного крана: вода, вливаясь, мечется между стенками пакета, вызывая их вибрацию. Причина возникновения третьего тона заключается в том, что в начале диастолы наполнение желудочков кровью недостаточно для создания хотя бы небольшого эластического напряжения стенок, необходимого для вибрации. Третий тон имеет настолько низкую частоту звуков, что обычно не слышен, однако может быть зарегистрирован на фонокардиограмме.
Видео:Клапаны сердцаСкачать
Предлагаем ознакомиться со звуками аускультации сердца:
— Если ваш браузер не поддерживает аудио предлагаем его скачать: —Переписать аудио-файл аускультации
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Видео:Клапаны сердца - анатомия сердечно-сосудистой системы (ССС)Скачать
БИОЛОГИЧЕСКИЙ ОТДЕЛ ЦЕНТРА ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА
Видео:Клапаны сердцаСкачать
Сердце
Сердце — это насос, обеспечивающий ток крови по кровеносным сосудам посредством повторных ритмичных сокращений. Сердце состоит из трех слоев (рис. 1). Внутренний – эндокард гомологичен эндотелию сосудов, средний – миокард состоит из кардиомиоцитов и несет сократительную функцию, наружний – эпикард состоит из соединительной ткани. Миокард человека имеет большую толщину, поэтому его питание обеспечивают коронарные артерии. Сердце окружено околосердечной сумкой – перикардом. Пространство между эпикардом и перикардом заполнено жидкостью, снижающей трение сердца о соседние ткани.
Рис. 1. Строение сердечной стенки.
Рис. 2. Внутреннее строение сердца.
Сердце состоит из предсердий (правое и левое), двух желудочков (правый и левый) (рис. 2). Правая и левая половины сердца не сообщаются и заполнены разными видами крови: правая – венозной (обедненной кислородом), левая – артериальной (обогащенной кислородом). Кровь всегда поступает в предсердия сердца по венам, переходит в желудочки и далее в артерии. Обратному току крови препятствуют клапаны сердца. Между предсердиями и желудочками располагаются створчатые клапаны: справа трехстворчатый (трикуспидальный), слева – двустворчатый (митральный). Между желудочками и артериями находятся полулунные клапаны: справа легочный, слева – аортальный (рис. 2, 3).
Процесс сокращения называется систолой, расслабления – диастолой. Систола обоих предсердий происходит одновременно, как и систола обоих желудочков. Сердечный цикл в состоянии покоя составляет примерно 0,8 с. Из них – 0,4 с сердце полностью находится в диастоле, 0,1 с приходится на систолу предсердий и 0,3 с – на систолу желудочков. Во время общей диастолы и систолы предсердий открыты створчатые и закрыты полулунные клапаны. Во время диастолы желудочка закрываются створчатые клапаны, а когда давление в сердце начинает превышать давление в аорте, открываются полулунные клапаны.
Читайте также: Домкрат 50 тонн tuv 2 клапана белак бак 00038
Сердце сокращается автономно от нервной системы так как обладает миогенной автоматией. Это значит, что существуют узлы автоматии (ритмоводители), которые запускают сокращение сердца. Узлы автоматии расположены в определенных местах и подчиняются строгой иерархии (рис. 4). Главный узел автоматии, или узел автоматии первого порядка, располагается в месте впадения венозного синуса в правое предсердие и называется синусно-предсердный (сино-атриальный, SA-узел). В норме из этого узла возбуждение распространяется по всему сердцу и сердце сокращается в его ритме (60-80 уд/мин в состоянии покоя). Узел автоматии второго порядка расположен на границе предсердий и желудочков, и называется предсердно-желудочковый (атрио-вентрикулярный, AV-узел). Его ритм ниже (около 40 уд/мин) и при нормальной работе сердца не проявляется. Чтобы возбуждение распространялось быстро и сокращение КМЦ желудочка происходило синхронно, существуют специальные проводящие волокна: пучок Гиса, ножки Гиса и волокна Пуркинье. Эти клетки также могут генерировать спонтанные ПД с низкой частотой (около 20 уд/мин), поэтому такие волокна называют узлом автоматии третьего порядка. В норме этот ритм также не проявляется.
Рис. 4. Расположение узлов автоматии в сердце.
Несмортя на то, что сердце способно сокращаться автономно, нервная система корректирует частоту сердечных сокращений (ЧСС). Сино-атриальный узел получает влияние от вегетативной нервной системы. При действии парасимпатической нервной системы ЧСС снижается. Нейромедиатором в таком случае выступает ацетилхолин, а центры регуляции расположены в продолговатом мозге. Активация симпатической нервной системы приводит к увеличению ЧСС. Нейромедиатором служит норадреналин, а центры располагаются в верхних грудных сегментах спинного мозга. Регуляция со стороны нервной системы обеспечивает подстройку ритма сердца к нагрузке организма.
Рис. 5. Круги кровообращения.
Сердце человека обеспечивает непрерывную циркуляцию крови по двум кругам кровообращения: большому и малому. Большой круг кровообращения снабжает кислородом все ткани организма. Для эффективного транспорта крови в головной мозг и другие ткани, в левом желудочке и артериях большого круга развивается высокое давление. Большой круг кровообращения начинается в левом желудочке, откуда артериальная кровь поступает в левую дугу аорты и далее распределяется по артериям, артериолам и капиллярам. Капилляры – это обменные состуды, которые состоят из одного слоя клеток. Через них происходит диффузия газов, питательных веществ и метаболитов из крови и в кровь. Из капилляров венозная кровь собирается в венулы и вены. Вены, идущие от кишечника распадаются на капиллярную сеть в печени (воротная система печени), где происходит обезвреживание вредных веществ, которые могли поступить с пищей. Вены от нижних конечностей и органов брюшной полости собираются в нижнюю полую вену, от верхних конечностей и головы – в верхнюю полую вену. С задней стороны сердца полые вены сливаются в венозный синус, который впадает в правое предсердие, из которого кровь уходит на малый круг.
Малый круг кровообращения служит для обогащения венозной крови кислородом. Поскольку сердце и легкие располагаются примерно на одном уровне, в малом круге давление невысокое. По его артериям движется венозная кровь, а по венам – артериальная. Малый круг начинается с правого желудочка, сокращени которого приводит к выбросу крови а легочные артерии. Далее, кровь поступает в капилляры легких, где обогащается кислородом. Артериальная кровь собирается в вены, которые впадают в левое предсердие.
Читайте также: Троит мотор приора 16 клапанов причины
Рис. 6. Сердце при различных вариантах медицинского обследования. а) УЗИ, б) МРТ.
Электрокардиография (ЭКГ) — это метод графической регистрации разности потенциалов электрического поля сердца, возникающего при его деятельности. Регистрация производится при помощи аппарата — электрокардиографа. Проще говоря, электрические импульсы распространяются по сердцу всегда в определенной последовательности. ЭКГ позволяет зарегистрировать распространение электрической активности сердца во времени.
Впервые запись электрокардиограммы произвел Огюст Дезире Уоллер (рис. 7). Он разрабатывал теорию электрических полей сердца, которую в последствии развил голландский физиолог Виллем Эйнтховен. Он же первым в 1906 г. использовал этот метод для диагностики. Эйнтховен развил не только теорию ЭКГ, но и методы стандартизации записи. За свои заслуги он удостоился Нобелевской премии по физиологии и медицине в 1924 году. Три стандартных отведения по Эйнтховену и в настоящее время является одним из основных способов исследования ЭКГ.
Рис. 7. Огюст Дезире Уоллер и первая запись ЭКГ.
Рис. 8. Стандартные отведения по Эйнтховену.
Чтобы измерять электрическую активность сердца, его необходимо поместить в систему координат. В качестве такой системы Эйнтховен принял треугольник, вершинами которого служат наложенные на руки и ногу электроды. Сторона треугольника, направленная от правой руки к левой называется первым отведением, от правой руки к левой ноге – вторым отведением, а от левой руки к левой ноге – третьим отведением. Распространение возбуждения является векторной величиной, на записи ЭКГ отражается проекция электрической активности сердца на каждое отведение. Если вектор совпадает с направлением отведения, то отклонение будет положительным, если они потивоположны – отрицательным (рис. 9).
ЭКГ, в случае стандартного наложения электродов, состоит из ряда периодически повторяющихся элементов. Положительные и отрицательные отклонения от изоэлектрической лини принято называть зубцами. Выделяют пять зубцов: P, Q, R, S, T.
Рис. 9. Проекция вектора распространения возбуждения в сердце на три стандартных отведения. Источник https://med.wikireading.ru/35207
Рис. 10. Расшифровка ЭКГ и ее соответствие фазам сердечного цикла. Источник http://1poserdcu.ru/diagnostika/rasshifrovka-ekg-u-detej.html
Зубец P является самым низкоамплитудным элементом ЭКГ и отражает распространение возбуждения по предсердиям. Когда предсердия охвачены возбуждением, на ЭКГ можно увидеть изоэлектрическую линию. При распространении возбуждения по желудочкам вектор несколько раз меняет направление. Этот процесс отражает QRS комплекс. Одновременно с этим происходит реполяризация предсердий. Реполяризацию желудочков отражает Т-зубец.
При различных патологиях сердца проводимость его частей для электричества изменяется, что приводит к нарушению структуры ЭКГ. Самым ярким примером нарушения может служить инфаркт миокарда. При инфаркте поражается группа КМЦ. Эти клетки больше не способны к проведению электричества. Из них выделяются метаболиты и нарушают состав межклеточного вещества и деятельность соседних клеток. Те, в свою очередь, закрывают щелевые контакты и перестают проводить электричество. В течение нескольких месяцев или лет, часть из этих клеток может восстановиться и вновь начать проводить ПД, другая часть — погибнуть. Поскольку самая толстая стенка и самая большая нагрузка в левом желудочке, в нем вероятность инфаркта максимальна. Следовательно, на ЭКГ будет изменяться QRS комплекс и T-зубец. Причем, из-за постоянного изменения количества проводящих клеток, форма ЭКГ будет меняться (рис. 11). Обычно к признакам инфаркта относят слияние QRS-комплекса и T-зубца наподобие «кошачьей спинки», сильное увеличение или инверсию Т-зубца.
🌟 Видео
Протезирование аортального клапанаСкачать
Фазы сердца. Как понять за 5 минут?Скачать
Физиология. Сердечный цикл (систола и диастола).#28Скачать
Давление в левых отделах сердца. Часть 1Скачать
Борис Тодуров: чем опасны пороки клапанов сердца и как их распознать? ► О пороках сердца #5Скачать
Сердечный цикл. Без ЭТОГО ты не сдашь ЕГЭ | ЛЕКЦИЯ по биологии | Ксения Напольская 100балльныйСкачать
Всё о СЕРДЦЕ для ЕГЭ | ЛЕКЦИЯ по биологии | Ксения Напольская 100балльныйСкачать
Кровообращение для ЕГЭ 2024 |ЕГЭ БИОЛОГИЯ|Freedom|Скачать
Замена сердечного клапана: как продлить жизнь своего сердца?Скачать
Физиология сердцаСкачать
Вячеслав Дубынин: "Сердце человека" (Лекция 6)Скачать
Физиология. Глава 3. Сердечно-сосудистая система. Сердце. Часть 2Скачать
Строение сердца человека, круги кровообращенияСкачать
Сердечный Цикл| АнимацияСкачать
Фазы сердечной деятельности. Анатомия человекаСкачать
Физиология. Аускультация сердце. Тоны и шумы сердце. Клапани сердце. #30Скачать
Анатомия сердца. Сердечный цикл. Регуляция. Болезни. Лекция и разбор заданий от Юрия БеллевичаСкачать