Одной из важнейших характеристик микропроцессора является его быстродействие. От чего же оно зависит?
В первую очередь – от тактовой частоты, то есть от частоты той последовательности импульсов, которая задает ритм работы внутренних устройств микросхемы микропроцессора. Конечно, тактовая частота — величина не «безразмерная», она зависит от того, каким способом, т.е. по какой технологии изготавливается микро-схема микропроцессора. Если, например, подать высокие частоты, используемые при работе современных компьютеров, на микросхемы, произведенные, в 80-90х годах, то работа этих микросхем будет просто невозможна.
Во-вторых, на быстродействие микропроцессора влияет раз-рядность шины данных. Количество разрядов ШД определяет скорость и эффективность информационного обмена. Обычно ШД имеет 8, 16, 32 или 64 разряда. Понятно, что за один цикл обмена по 64-разрядной шине может передаваться восемь байт информации, в то время, как по восьмиразрядной – только один. Разрядность шины данных определяет и разрядность системной шины, в том смысле, что когда говорят о разрядности системной шины, подразумевают разрядность ШД.
В-третьих, на быстродействие микропроцессора влияет объем оперативной памяти, используемой в системе. Так как чем больше объем, тем больше промежуточной информации может сохраняться при работе программ микропроцессора.
Также, опосредованнона быстродействие микропроцессора влияет разрядность шины адреса, которая определяет максимально возможную сложность микропроцессорной системы, т.е. допустимый объем памяти, и, следовательно, максимально допустимый размер программ и максимально возможный объем запоминаемых данных. Количество адресов, обеспечиваемое шиной адреса, равно 2 N , где N – количество разрядов ША. Например, 16-разрядная шина адреса позволит адресоваться к 65536 ячейкам памяти. Разрядность шины адреса обычно кратна 4 и может достигать 32 и даже 64 разрядов.
В-четвертых, немаловажным фактором, влияющим на быстродействие микропроцессоров, является их архитектура. Чем совершеннее электронная схема, на которой реализован микропроцессор, тем меньше временипонадобится электрическому сигналу для ее прохождения – с одной стороны. С другой стороны, чем совершеннее система командмикропроцессора, тем более совершенна программа, в соответствии с которой он работает.
Контрольные вопросы
1.Чем отличается контроллер от микроконтроллера?
2.В каких узлах автомобиля используются микроконтроллеры?
3.Каковы отличия между персональным компьютером и микро-компьютером?
4.От чего зависит быстродействие микропроцессорных систем?
5.Что такое ПЛИС? В чем ее «гибкость» и в чем ее «жесткость»?
6.Почему и каким образом разрядность шины адреса влияет на быстродействие?
2. Шины микропроцессорной системы и циклы обмена:
Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена информацией по шинам таких систем. Без этого невозможно разработать аппаратную часть системы, а без аппаратной части не будет работать никакое программное обеспечение.
За более чем 30 лет, прошедших с момента появления первых микропроцессоров, были выработаны определенные правила обмена, которым следуют и разработчики новых микропроцессорных систем. Правила эти не слишком сложны, но твердо знать и неукоснительно соблюдать их для успешной работы необходимо. Как показала практика, принципы организации обмена по шинам гораздо важнее, чем особенности конкретных микропроцессоров. Стандартные системные магистрали живут гораздо дольше, чем тот или иной процессор. Разработчики новых процессоров ориентируются на уже существующие стандарты магистрали. Более того, некоторые системы на основе совершенно разных процессоров используют одну и ту же системную магистраль. То есть магистраль оказывается самым главным системообразующим фактором в микропроцессорных системах.
Обмен информацией в микропроцессорных системах происходит в циклах обмена информацией. Под циклом обмена информацией понимается временной интервал, в течение которого происходит выполнение одной элементарной операции обмена по шине. Например, пересылка кода данных из процессора в память или же пересылка кода данных из устройства ввода/вывода в процессор. В пределах одного цикла также может передаваться и несколько кодов данных, даже целый массив данных, но это встречается реже.
Циклы обмена информацией делятся на два основных типа:
Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать
- Цикл записи (вывода), в котором процессор записывает (выводит) информацию;
- Цикл чтения (ввода), в котором процессор читает (вводит) информацию.
В некоторых микропроцессорных системах существует также цикл «чтение-модификация-запись» или же «ввод-пауза-вывод». В этих циклах процессор сначала читает информацию из памяти или устройства ввода/вывода, затем как-то преобразует ее и снова записывает по тому же адресу. Например, процессор может прочитать код из ячейки памяти, увеличить его на единицу и снова записать в эту же ячейку памяти. Наличие или отсутствие данного типа цикла связано с особенностями используемого процессора.
Особое место занимают циклы прямого доступа к памяти (если режим ПДП в системе предусмотрен) и циклы запроса и предоставления прерывания (если прерывания в системе есть). Когда в дальнейшем речь пойдет о таких циклах, это будет специально оговорено.
Во время каждого цикла устройства, участвующие в обмене информацией, передают друг другу информационные и управляющие сигналы в строго установленном порядке или, как еще говорят, в соответствии с принятым протоколом обмена информацией.
Длительность цикла обмена может быть постоянной или переменной, но она всегда включает в себя несколько периодов сигнала тактовой частоты системы. То есть даже в идеальном случае частота чтения информации процессором и частота записи информации оказываются в несколько раз меньше тактовой частоты системы.
Чтение кодов команд из памяти системы также производится с помощью циклов чтения. Поэтому в случае одношинной архитектуры на системной магистрали чередуются циклы чтения команд и циклы пересылки (чтения и записи) данных, но протоколы обмена остаются неизменными независимо от того, что передается — данные или команды. В случае двухшинной архитектуры циклы чтения команд и записи или чтения данных разделяются по разным шинам и могут выполняться одновременно
2.1. Шины микропроцессорной системы
Прежде чем переходить к особенностям циклов обмена, остановимся подробнее на составе и назначении различных шин микропроцессорной системы.
Как уже упоминалось, в системную магистраль (системную шину) микропроцессорной системы входит три основные информационные шины: адреса, данных и управления.
Шина данных — это основная шина, ради которой и создается вся система. Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд.
Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.
Обычно шина данных имеет 8, 16, 32 или 64 разряда. Понятно, что за один цикл обмена по 64-разрядной шине может передаваться 8 байт информации, а по 8-разрядной — только один байт. Разрядность шины данных определяет и разрядность всей магистрали. Например, когда говорят о 32-разрядной системной магистрали, подразумевается, что она имеет 32-разрядную шину данных.
Шина адреса — вторая по важности шина, которая определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и, следовательно, максимально возможный размер программы и максимально возможный объем запоминаемых данных. Количество адресов, обеспечиваемых шиной адреса, определяется как 2N, где N — количество разрядов. Например, 16-разрядная шина адреса обеспечивает 65 536 адресов. Разрядность шины адреса обычно кратна 4 и может достигать 32 и даже 64. Шина адреса может быть однонаправленной (когда магистралью всегда управляет только процессор) или двунаправленной (когда процессор может временно передавать управление магистралью другому устройству, например контроллеру ПДП). Наиболее часто используются типы выходных каскадов с тремя состояниями или обычные ТТЛ (с двумя состояниями).
Как в шине данных, так и в шине адреса может использоваться положительная логика или отрицательная логика. При положительной логике высокий уровень напряжения соответствует логической единице на соответствующей линии связи, низкий — логическому нулю. При отрицательной логике — наоборот. В большинстве случаев уровни сигналов на шинах — ТТЛ.
Для снижения общего количества линий связи магистрали часто применяется мультиплексирование шин адреса и данных. То есть одни и те же линии связи используются в разные моменты времени для передачи как адреса, так и данных (в начале цикла — адрес, в конце цикла — данные). Для фиксации этих моментов (стробирования) служат специальные сигналы на шине управления. Понятно, что мультиплексированная шина адреса/данных обеспечивает меньшую скорость обмена, требует более длительного цикла обмена (рис. 2.1). По типу шины адреса и шины данных все магистрали также делятся на мультиплексированные и немультиплексированные.
Читайте также: Датчики давления шин vdo
Рис. 2.1. Мультиплексирование шин адреса и данных.
В некоторых мультиплексированных магистралях после одного кода адреса передается несколько кодов данных (массив данных). Это позволяет существенно повысить быстродействие магистрали. Иногда в магистралях применяется частичное мультиплексирование, то есть часть разрядов данных передается по немультиплексированным линиям, а другая часть — по мультиплексированным с адресом линиям.
Шина управления — это вспомогательная шина, управляющие сигналы на которой определяют тип текущего цикла и фиксируют моменты времени, соответствующие разным частям или стадиям цикла. Кроме того, управляющие сигналы обеспечивают согласование работы процессора (или другого хозяина магистрали, задатчика, master) с работой памяти или устройства ввода/вывода (устройства-исполнителя, slave). Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа.
Видео:Всё о видеокартах за 11 минутСкачать
Сигналы шины управления могут передаваться как в положительной логике (реже), так и в отрицательной логике (чаще). Линии шины управления могут быть как однонаправленными, так и двунаправленными. Типы выходных каскадов могут быть самыми разными: с двумя состояниями (для однонаправленных линий), с тремя состояниями (для двунаправленных линий), с открытым коллектором (для двунаправленных и мультиплексированных линий).
- Самые главные управляющие сигналы — это стробы обмена, то есть сигналы, формируемые процессором и определяющие моменты времени, в которые производится пересылка данных по шине данных, обмен данными. Чаще всего в магистрали используются два различных строба обмена: Строб записи (вывода), который определяет момент времени, когда устройство-исполнитель может принимать данные, выставленные процессором на шину данных;
- Строб чтения (ввода), который определяет момент времени, когда устройство-исполнитель должно выдать на шину данных код данных, который будет прочитан процессором.
При этом большое значение имеет то, как процессор заканчивает обмен в пределах цикла, в какой момент он снимает свой строб обмена. Возможны два пути решения (рис. 2.2):
- При синхронном обмене процессор заканчивает обмен данными самостоятельно, через раз и навсегда установленный временной интервал выдержки (tвыд), то есть без учета интересов устройства-исполнителя;
- При асинхронном обмене процессор заканчивает обмен только тогда, когда устройство-исполнитель подтверждает выполнение операции специальным сигналом (так называемый режим handshake — рукопожатие).
Рис. 2.2. Синхронный обмен и асинхронный обмен.
Достоинства синхронного обмена — более простой протокол обмена, меньшее количество управляющих сигналов. Недостатки — отсутствие гарантии, что исполнитель выполнил требуемую операцию, а также высокие требования к быстродействию исполнителя.
Достоинства асинхронного обмена — более надежная пересылка данных, возможность работы с самыми разными по быстродействию исполнителями. Недостаток — необходимость формирования сигнала подтверждения всеми исполнителями, то есть дополнительные аппаратурные затраты.
Какой тип обмена быстрее, синхронный или асинхронный? Ответ на этот вопрос неоднозначен. С одной стороны, при асинхронном обмене требуется какое-то время на выработку, передачу дополнительного сигнала и на его обработку процессором. С другой стороны, при синхронном обмене приходится искусственно увеличивать длительность строба обмена для соответствия требованиям большего числа исполнителей, чтобы они успевали обмениваться информацией в темпе процессора. Поэтому иногда в магистрали предусматривают возможность как синхронного, так и асинхронного обмена, причем синхронный обмен является основным и довольно быстрым, а асинхронный применяется только для медленных исполнителей.
По используемому типу обмена магистрали микропроцессорных систем также делятся на синхронные и асинхронные.
2.2. Циклы обмена информацией
2.2.1. Циклы программного обмена
Рассмотрим для примера два довольно типичных случая программного обмена по магистрали микропроцессорной системы.
Первый пример — это обмен по мультиплексированной асинхронной магистрали Q-bus, предложенной фирмой DEC и широко применявшейся в микрокомпьютерах и промышленных контроллерах. Упрощенные временные диаграммы циклов чтения (ввода) и записи (вывода) по этой магистрали приведены на рис. 2.3 и 2.4.
Отметим, что в дальнейшем тексте знак «минус» перед названием сигнала говорит о том, что активный уровень сигнала низкий, пассивный — высокий, то есть сигнал отрицательный. Если минуса перед названием сигнала нет, то сигнал положительный, его низкий уровень пассивный, а высокий — активный.
На шине адреса/данных (AD) в начале цикла обмена (в фазе адреса) процессор (задатчик) выставляет код адреса. На этой шине используется отрицательная логика. Средний уровень сигналов на шине AD обозначает, что состояния сигналов на шине в данные временные интервалы не важны. Для стробирования адреса используется отрицательный синхросигнал -SYNC, выставляемый также процессором. Его передний (отрицательный) фронт соответствует действительности кода адреса на шине AD. Фаза адреса одинакова в обоих циклах записи и чтения.
Рис. 2.3. Цикл чтения на магистрали Q-bus.
Получив (распознав) свой код адреса, устройство ввода/вывода или память (исполнитель) готовится к проведению обмена. Через некоторое время после начала (отрицательного фронта) сигнала -SYNC процессор снимает адрес и начинает фазу данных.
Рис. 2.4. Цикл записи на магистрали Q-bus.
В фазе данных цикла чтения (рис. 2.3) процессор выставляет сигнал строба чтения данных -DIN, в ответ на который устройство, к которому обращается процессор (исполнитель), должно выставить свой код данных (читаемые данные). Одновременно это устройство должно подтвердить выполнение операции сигналом подтверждения обмена -RPLY.
Для сигнала -RPLY используется тип выходного каскада ОК, чтобы не было конфликтов между устройствами-исполнителями. Процессор, получив сигнал -RPLY, заканчивает цикл обмена. Для этого он снимает сигнал -DIN и сигнал -SYNC. Устройство-исполнитель в ответ на снятие сигнала -DIN должно снять код данных с шины AD и закончить сигнал подтверждения -RPLY. После этого процессор снимает сигнал -SYNC.
Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать
В фазе данных цикла записи (рис. 2.4) процессор выставляет на шину AD код записываемых данных и сопровождает его отрицательным сигналом строба записи данных -DOUT. Устройство-исполнитель должно по этому сигналу принять данные от процессора и сформировать сигнал подтверждения обмена -RPLY. Процессор, получив сигнал -RPLY, заканчивает цикл обмена. Для этого он снимает код данных с шины AD и сигнал -DOUT. Устройство-исполнитель в ответ на снятие сигнала -DOUT должно закончить сигнал подтверждения -RPLY. После этого процессор снимает сигнал -SYNC.
То есть на данной магистрали адрес передается синхронно (без подтверждения его получения исполнителем), а данные передаются асинхронно, с обязательным подтверждением их выдачи или приема исполнителем. Отсутствие сигнала подтверждения -RPLY в течение заданного времени воспринимается процессором как аварийная ситуация. В принципе возможна и асинхронная передача адреса, что увеличивает надежность обмена, хотя может снижать его скорость.
Помимо циклов чтения и записи на магистрали Q-bus используются также и циклы типа «ввод-пауза-вывод» («чтение-модификация-запись»). Упрощенная временная диаграмма этого цикла представлена на рис. 2.5.
Рис. 2.5. Цикл «ввод-пауза-вывод» на магистрали Q-bus.
В этом цикле адресная фаза производится точно так же, как и в циклах чтения (ввода) и записи (вывода). Но в фазе данных процессор производит сначала чтение из заданного в адресной фазе адреса, а потом запись в тот же самый адрес. Для чтения используется строб чтения -DIN, а для записи – строб записи -DOUT. В ответ на сигнал -DIN устройство-исполнитель выдает свои данные на шину AD, а по сигналу -DOUT – принимает данные с шины AD. Как и в циклах чтения и записи, устройство-исполнитель подтверждает выполнение каждой операции сигналом подтверждения -RPLY. Понятно, что цикл «ввод-пауза-вывод» требует больше времени, чем каждый из циклов чтения или записи, но меньше времени, чем два последовательно произведенных цикла чтения и записи (так как для него нужна только одна адресная фаза). Сигнал -SYNC вырабатывается процессором в начале цикла «ввод-пауза-вывод» и держится до окончания всего цикла.
Читайте также: Как прописать датчик давления в шине mitsubishi pajero sport
В качестве второго примера рассмотрим циклы обмена на синхронной немультиплексированной магистрали ISA (Industrial Standard Architecture), предложенной фирмой IBM и широко используемой в персональных компьютерах. Упрощенные циклы записи в устройство ввода/вывода и чтения из устройства ввода/вывода приведены на рис. 2.6 и 2.7.
Оба цикла начинаются с выставления процессором (задатчиком) кода адреса на шину адреса SA (логика на этой шине положительная). Адрес остается на шине SA до конца цикла. Фаза адреса, одинаковая для обоих циклов, заканчивается с началом строба обмена данными -IOR или -IOW. В течение фазы адреса устройство-исполнитель должно принять код адреса и распознать или не распознать его. Если адрес распознан, исполнитель готовится к обмену.
В фазе данных цикла чтения (рис. 2.6) процессор выставляет отрицательный сигнал чтения данных из устройства ввода/вывода -IOR. В ответ на него устройство-исполнитель должно выдать на шину данных SD свой код данных (читаемые данные). Логика на шине данных положительная. Через установленное время строб обмена -IOR снимается процессором, после чего снимается также и код адреса с шины SA. Цикл заканчивается без учета быстродействия исполнителя.
Рис. 2.6. Цикл чтения из УВВ на магистрали ISA.
Рис. 2.7. Цикл записи в УВВ на магистрали ISA.
Но так происходит только в случае основного, синхронного обмена. Кроме него на магистрали ISA также предусмотрена возможность асинхронного обмена. Для этого применяется сигнал готовности канала (магистрали) I/O CH RDY. Тип выходного каскада для данного сигнала — ОК, для предотвращения конфликтов между устройствами-исполнителями. При синхронном обмене сигнал I/O CH RDY всегда положительный. Но медленное устройство-исполнитель, не успевающее работать в темпе процессора, может этот сигнал снять, то есть сделать нулевым сразу после начала строба обмена. Тогда процессор до того момента, пока сигнал I/O CH RDY не станет снова положительным, приостанавливает завершение цикла, продлевает строб обмена. Конечно, слишком большая длительность этого сигнала рассматривается как аварийная ситуация. Для простоты понимания можно считать, что устройство-исполнитель формирует в данном случае отрицательный сигнал неготовности завершить обмен. На время этого сигнала обмен на магистрали приостанавливается.
Принципиальное отличие асинхронного обмена по магистрали ISA от асинхронного обмена по магистрали Q-bus состоит в следующем. Если в случае Q-bus сигнал подтверждения обязателен, и его должен формировать каждый исполнитель, то в случае ISA сигнал о неготовности исполнитель может не формировать, если он успевает работать в темпе процессора. Зато в случае Q-bus к концу цикла обмена процессор всегда уверен, что устройство-исполнитель выполнило требуемую операцию, а в случае ISA такой уверенности нет.
В фазе данных цикла записи по магистрали ISA (рис. 2.7) процессор выставляет на шину данных SD код записываемых данных и сопровождает их стробом записи данных в устройство ввода/вывода -IOW. Получив этот сигнал, устройство-исполнитель должно принять с шины SD код записываемых данных. Если оно не успевает сделать это в темпе процессора, то оно может снять на нужное время сигнал I/O CH RDY после получения переднего фронта сигнала -IOW. Тогда процессор приостановит окончание цикла записи.
Рассмотренные примеры, конечно, не раскрывают всех тонкостей обмена по упомянутым магистралям. Они всего лишь иллюстрируют главные принципы обмена по ним.
2.2.2. Циклы обмена по прерываниям
Циклы обмена в режиме прерываний строятся по тем же принципам, что и циклы программного обмена, но имеют ряд специфических особенностей.
Прерывания в микропроцессорных системах бывают двух основных типов:
- векторные прерывания, которые требуют проведения цикла чтения по магистрали;
- радиальные прерывания, которые не требуют никакого цикла обмена по магистрали.
Дело в том, что прерываний в микропроцессорной системе обычно бывает много. Поэтому процессору необходима информация о номере (или, как еще говорят, об адресе вектора) конкретного прерывания. Эта информация может быть передана процессору двумя путями.
Видео:Как разогнать процессор и память? Гоним по шине и множителю.Скачать
При векторном прерывании код номера прерывания передается процессору тем устройством ввода/вывода, которое данное прерывание запросило. Для этого процессор проводит цикл чтения по магистрали, и по шине данных получает код номера прерывания. Шина адреса в данном цикле обычно не используется, так как устройство, запросившее прерывание, и так знает, что процессор будет обращаться именно к нему. В этом случае в магистрали достаточно всего одной линии запроса прерывания для всех устройств ввода/вывода. Так организованы прерывания, например, в магистрали Q-bus.
Рис. 2.8. Сигналы запроса и предоставления прерывания в магистрали Q-bus.
Схема распространения сигналов, участвующих в прерываниях на магистрали Q-bus, показана на рис. 2.8. Упрощенная временная диаграмма цикла запроса и предоставления магистрали представлена на рис. 2.9.
Рис. 2.9. Цикл запроса/предоставления векторного прерывания на магистрали Q-bus.
Запрос прерывания осуществляется отрицательным сигналом -VIRQ, который может формироваться каждым из устройств, запрашивающих прерывание. Тип выходного каскада для этого сигнала — ОК, чтобы избежать конфликтов между запрашивающими прерывания устройствами. Получив сигнал -VIRQ, процессор предоставляет прерывание (закончив предварительно выполнение текущей команды). Для этого он выставляет сигнал чтения данных -DIN и сигнал предоставления прерывания IAKO. Этот сигнал IAKO последовательно проходит через все устройства, которые могут запрашивать прерывания. Если устройство запросило прерывание, то оно не пропускает через себя этот сигнал. В результате получается, что если прерывания одновременно запросили два или более устройств, то сигнал предоставления прерывания получит только одно устройство, а именно то, которое ближе к процессору. Такой механизм разрешения конфликтов называется иногда географическим приоритетом (или цепочечным приоритетом, Daisy Chain). Получив сигнал IAKO, устройство, запросившее прерывание, должно снять свой сигнал — прерывания. В ответ на полученные сигналы -DIN и IAKO устройство, которому предоставлено прерывание, должно выдать на шину адреса/данных AD код номера прерывания (адреса вектора прерывания) и выставить сигнал подтверждения -RPLY. Процессор читает код номера прерывания и заканчивает цикл безадресного чтения снятием сигналов -DIN и IAKO.
Рис. 2.10. Структура связей для организации радиальных прерываний на магистрали ISA.
При радиальном прерывании в магистрали имеется столько линий запроса прерывания, сколько всего может быть разных прерываний. То есть каждое устройство ввода/вывода, желающее использовать прерывание, подает сигнал запроса прерывания по своей отдельной линии. Процессор узнает о номере прерывания по номеру линии, по которой пришел сигнал запроса прерывания. Никаких циклов обмена по магистрали при этом не требуется. В случае радиальных прерываний в систему обычно включается дополнительная микросхема контроллера прерываний, обрабатывающая сигналы запросов прерываний. Именно так организованы прерывания, например, в магистрали ISA.
Упрощенная структура связей между устройствами, участвующими в обмене по прерываниям, на магистрали ISA показана на рис. 2.10. Процессор общается с контроллером прерываний как по магистрали (чтобы задать ему режимы работы), так и вне магистрали (при обработке запросов на прерывание). Сигналы запросов прерываний IRQ распределяются между всеми устройствами магистрали. На каждую линию IRQ приходится одно устройство. Тип выходного каскада для этих линий — 2С, так как конфликты здесь не предусмотрены. Запросом VIRQ.
Затем процессор проводит цикл безадресного чтения номера прерывания является передний, положительный фронт сигнала IRQ. При одновременном поступлении сигналов IRQ от нескольких устройств порядок их обслуживания определяется контроллером прерываний.
Какой тип прерываний лучше — векторный или радиальный?
Векторные прерывания обеспечивают системе большую гибкость, в системе их может быть очень много. Но зато они требуют дополнительных аппаратурных узлов во всех устройствах, запрашивающих прерывания, для обслуживания циклов безадресного чтения.
Радиальных прерываний в системе обычно не очень много (от 1 до 16). При этом типе прерываний, как правило, требуется введение в систему специального контроллера прерываний. Каждое радиальное прерывание требует введения дополнительной линии в шину управления системной магистрали. Но работать с радиальными прерываниями проще, так как все сводится только к выработке единственного сигнала IRQ, и никаких циклов обмена по магистрали не требуется.
Читайте также: Шины диски адреса в перми
2.2.3. Циклы обмена в режиме ПДП
Циклы обмена в режиме прямого доступа к памяти выполняются по тем же правилам, что и циклы программного обмена, и циклы предоставления прерываний.
Прежде чем начать обмен в режиме ПДП, устройство, которому необходим ПДП, должно запросить ПДП и получить его. Процедура запроса и предоставления ПДП очень похожа на процедуру запроса и предоставления прерывания. В обоих случаях устройство, требующее обслуживания, посылает сигнал запроса процессору. Однако в случае ПДП процессор обязательно должен предоставить ПДП запросившему устройству с помощью специальных сигналов, так как на время ПДП процессор отключается от магистрали. А при радиальных прерываниях предоставления прерывания от процессора не требуется.
На магистрали Q-bus запрос и предоставление ПДП организуются подобно запросу и предоставлению прерывания. Упрощенная структура связей устройств, участвующих в ПДП, показана на рис. 2.11. Временная диаграмма запроса/предоставления ПДП очень близка к временной диаграмме запроса/предоставления прерывания (см. рис. 2.9).
Рис. 2.11. Структура связей запроса/предоставления ПДП на магистрали Q-bus.
Сигнал запроса ПДП, называемый -DMR, передается всеми устройствами, нуждающимися в ПДП, по одной линии магистрали. Тип выходного каскада на этой линии — ОК. Процессор, получив сигнал -DMR, выдает сигнал предоставления ПДП DMGO, аналогичный сигналу IAKO. Этот сигнал также проходит через все устройства последовательно, в результате чего ПДП получает только то устройство, которое находится ближе к процессору (географический приоритет). А затем устройство, получившее ПДП, проводит циклы обмена по магистрали, аналогично циклам программного обмена. В циклах ПДП информация читается из памяти и записывается в устройство ввода/вывода, или наоборот — читается из устройства ввода/вывода и передается в память.
На магистрали ISA запрос/предоставление ПДП очень напоминает организацию радиальных прерываний (рис. 2.12). Точно так же в системе существует контроллер ПДП, к которому сходятся сигналы запроса ПДП, называемые DRQ, и от которого расходятся сигналы предоставления ПДП, называемые -DACK. К каждому каналу ПДП (пара сигналов DRQ и -DACK) подключается только одно устройство, запрашивающее ПДП. Тип выходных каскадов для этих сигналов —2С. Устройство, нуждающееся в ПДП, посылает сигнал запроса DRQ и получает в ответ сигнал предоставления -DACK. После этого контроллер ПДП проводит циклы обмена по магистрали между устройством ввода/вывода и памятью.
Упрощенная временная диаграмма циклов ПДП на магистрали ISA показана на рис. 2.13.
Видео:Частота процессора или частота системной шины?Скачать
На магистрали ISA используются раздельные стробы записи в память (-MEMW) и записи в устройства ввода/вывода (-IOW), а также раздельные стробы чтения из памяти (-MEMR) и чтения из устройств ввода/вывода (-IOR). Это позволяет за один цикл обмена ПДП читать информацию из памяти и записывать ее в устройство ввода/вывода или же читать информацию из устройства ввода/вывода и записывать ее в память. При этом на шине адреса выставляется адрес памяти, а адрес устройства ввода/вывода заменяется одним- единственным сигналом AEN. Естественно, в цикле обмена в режиме ПДП участвует только то устройство ввода/вывода, которое предварительно запросило ПДП и которому ПДП было предоставлено. Поэтому никаких конфликтов между устройствами ввода/вывода из-за такой упрощенной адресации не возникает.
Рис. 2.12. Структура связей запроса/предоставления ПДП на магистрали ISA.
Рис. 2.13. Цикл ПДП на магистрали ISA.
2.3. Прохождение сигналов по магистрали
При организации обмена по магистралям и шинам разработчику необходимо учитывать несколько важных моментов, связанных как с особенностью распространения сигналов по шинам, так и с самой природой шин. В противном случае микропроцессорная система может попросту не работать или работать неустойчиво, хотя вся логика цифровых устройств, входящих в систему, будет спроектирована безошибочно.
В случае, когда системная шина (магистраль) микропроцессорной системы является внешней, а не скрыта внутри микросхемы, необходимо учитывать особенности распространения сигналов по длинным линиям. Хотя в большинстве случаев длина магистрали не слишком велика, не превышает 1—2 десятков сантиметров, это все равно оказывает большое влияние на синхронизацию обмена.
На прохождение сигналов по магистрали влияют следующие факторы:
- конечная величина задержки распространения сигналов по линиям магистрали;
- различие задержек распространения сигналов по разным линиям шины;
- неодновременное выставление сигналов на линии шины; искажение фронтов сигналов, проходящих по линиям магистрали;
- отражение сигналов от концов линий связи (рис. 2.14).
Рис. 2.14. Прохождение сигналов по шине.
Для учета всех этих факторов разработчики стандартных магистралей обмена и стандартных протоколов обмена всегда закладывают необходимые задержки между сигналами, участвующими в обмене. Кроме того, задержки между сигналами выбираются таким образом, чтобы устройство, которому адресован тот или иной сигнал, имело достаточно времени для его обработки. Если разрабатывается новая магистраль, все это тоже надо учитывать.
Поэтому пытаться «модернизировать» какой-то стандартный протокол и ускорять обмен по магистрали путем уменьшения задержек, предусмотренных стандартом, очень опасно. Точно так же опасно, не изменяя протокола обмена, пытаться увеличить длину магистрали, увеличивая тем самым задержки распространения сигналов по линиям и шинам. Особенно чувствительны к такого рода «модернизациям» синхронные магистрали, в которых не предусмотрено обязательное подтверждение выполнения каждой операции.
Например, длительность фазы адреса в цикле обмена выбирается таким образом. В течение адресной фазы все сигналы всех разрядов кода адреса, пусть даже и сформированные процессором не одновременно, должны дойти до устройства-исполнителя по своим проводам шины. А устройство-исполнитель должно этот код адреса принять и обработать (то есть отличить свой адрес от чужого). Естественно, для гарантии в длительность адресной фазы еще добавляется небольшая дополнительная задержка.
Точно так же длительность фазы данных в цикле чтения должна выбираться такой, чтобы устройство-исполнитель успело получить строб чтения и выдать код читаемых данных на шину данных. Затем этот код должен успеть дойти до процессора и процессор должен успеть его прочитать. После чего процессор снимает сигнал строба чтения, этот задний фронт сигнала доходит с задержкой до устройства-исполнителя, которое также с задержкой снимает свой код данных. Аналогично и в цикле записи.
Для улучшения формы сигналов, распространяющихся по магистрали, иногда применяют оконечные согласователи (терминаторы) на концах линий магистрали. Особенно важно их применение в случае, когда допустимая длина магистрали превышает несколько метров. Например, в случае магистрали Q-bus применяются два типа согласователей: 120-омный и 250-омный (рис. 2.15).
Рис. 2.15. Оконечные согласователи на магистрали Q-bus.
Включение согласователей предъявляет дополнительные требования к нагрузочной способности передатчиков, работающих на линии магистрали. В магистрали ISA подобные согласователи не используются, хотя к некоторым линиям присоединены резисторы, соединенные другим своим выводом с шиной питания (прежде всего это линии, тип выходного каскада для которых — ОК).
В любом случае выходные каскады передатчиков, работающих на линии магистрали, должны обеспечивать высокие выходные токи, так как к магистрали может подключаться несколько устройств, каждое из которых потребляет входной ток. Типичные величины требуемых выходных токов магистральных передатчиков находятся в пределах 20—30 мА. В то же время входные токи магистральных приемников должны быть малыми, чтобы не перегружать передатчики. Типичные величины допустимых входных токов магистральных приемников лежат в пределах 0,2—0,8 мА
2.4. Функции устройств магистрали
Рассмотрим теперь, как взаимодействуют на магистрали основные устройства микропроцессорной системы: процессор, память (оперативная и постоянная), устройства ввода/вывода.
Процессор (рис. 2.16) обычно представляет собой отдельную микросхему или же часть микросхемы (в случае микроконтроллера). В прежние годы процессор иногда выполнялся на комплектах из нескольких микросхем, но сейчас от такого подхода уже практически отказались. Микросхема процессора обязательно имеет
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
Видео:КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать
🎦 Видео
Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать
Частота процессора, множитель и системная шинаСкачать
Принцип работы процессора на уровне ядраСкачать
Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать
Просто о сложном - тактовая частота процессора (CPU Clock)Скачать
Быстродействие процессора (факторы, влияющие на быстродействие)Скачать
Разрядность ОС и процессоров. Что лучше x64 или x32 (x86)?Скачать
Системные шины персонального компьютера для ...Скачать
Очень важные параметры видеокарты, на которые редко обращают внимание при покупке!Скачать
Системная шина процессораСкачать
169 секунд и ты знаешь как работает процессорСкачать
Как выбрать видеокарту. Что оказывает влияние на производительность.Скачать
Почему видеокарты стали такими плохими? Куда дели шину? Что вместо нее и Тест 4060, 4060Ti, 7600Скачать
Отключаем поэтапно память у RTX 3090 и 3060 и измеряем разницу в производительности.Скачать