Can шина уровень помех

Texas Instruments ISO1042 ISO105 SN6505 TPS76350

Can шина уровень помех

Используемые во многих системах для коммуникационных целей интерфейсы CAN уязвимы для высоковольтных бросков напряжения. Однако некоторые устройства могут помочь защититься от этих проблем.

CAN (Controller Area Network – сеть контроллеров) – это очень популярная последовательная шина, широко используемая в автомобилях, средствах промышленной автоматизации и других промышленных приложениях. Более новая усовершенствованная версия, названная CAN-FD (гибкая скорость передачи данных), обеспечивает более высокие скорости и другие улучшения.

Как обнаружили многие разработчики, CAN часто требует электрической изоляции между узлами и защиты от высоковольтных выбросов, которые регулярно происходят в автомобильном и промышленном оборудовании. Некоторые из недавно анонсированных приемопередатчиков CAN теперь поддерживают последнюю спецификацию CAN-FD, и, кроме того, имеют необходимую изоляцию. Решения для защиты могут также быть основаны на внешних дискретных компонентах, подключаемых к шине.

Видео:Подробно про CAN шинуСкачать

Подробно про CAN шину

Знакомство с CAN

CAN – это стандарт последовательного интерфейса, разработанный компанией Robert Bosch и одобренный Собществом автомобильных инженеров (SAE) еще в 1980-х годах. С тех пор, благодаря своей гибкости и надежности, он стал широко использоваться в транспортных средствах и многих промышленных приложениях. Топология интерфейса представляет собой дифференциальную шину с экранированной или неэкранированной витой парой, к которой может быть подключено до 127 узлов. Все узлы являются приемопередатчиками, способными посылать и получать данные. Выпускаются стандартные микросхемы приемопередатчиков, но многие микроконтроллеры имеют интегрированный интерфейс CAN (Рисунок 1).

Рисунок 1.Топология шины CAN, к которой подключены микроконтроллер с интерфейсом
CAN и другие приемопередающие узлы.

Данные передаются кадрами, состоящими из 8 байт данных, адресного поля, поля контрольной суммы CRC и других служебных полей. Скорость передачи данных не фиксирована и, начинаясь с 5 кбит/с, может достигать 1 Мбит/с. Максимальная длина шины при скорости 1 Мбит/с равна 40 м. Используется множественный доступ к шине с прослушиванием несущей и обнаружением коллизий (CSMA/CD). CAN имеет ряд разновидностей, таких как CAN-FD, CANopen и SAE J1939. Используются также обозначения ISO-11898 и ISO-11519, присвоенные Международной организацией по стандартизации (ISO).

CAN-FD (ISO-11898-1) – это новейшая версия, которая увеличивает скорость передачи данных до 5 Мбит/с и выше, что делает систему более адаптированной к приложениям реального времени, требующим более низкой задержки и большего детерминизма. Кадр большего размера теперь вмещает 64 байта данных.

Видео:Проходим 3 уровень simulator electude Проверяем CAN шинуСкачать

Проходим 3 уровень simulator electude  Проверяем CAN шину

Необходимость изоляции

Помимо широкого распространения в автомобильных приложениях, интерфейс CAN используется в системах промышленной автоматизации, драйверах двигателей переменного и постоянного тока, каналах обмена ПЛК, источниках питания телекоммуникационного оборудования, системах отопления и кондиционирования, лифтах, солнечных инверторах и зарядных станциях электрических автомобилей. В некоторых случаях в оборудовании имеются низко- и высоковольтные сегменты, которые должны быть изолированы друг от друга, чтобы защитить низковольтные компоненты от повреждения.

Высоковольтные двигатели, коммутаторы, источники питания и другое оборудование могут генерировать помехи амплитудой в сотни и тысячи вольт. Высоковольтный сигнал, попадающий в низковольтную подсистему, потенциально может уничтожить микроконтроллер. Способом решения этой проблемы является использование изолированных приемопередатчиков и отдельных источников питания с их собственными возвратными землями.

Видео:CAN шина👏 Как это работаетСкачать

CAN шина👏 Как это работает

Изоляция

В современных системах CAN необходимо изолировать как сигналы, так и питание. Изоляция реализуется в приемопередатчике, но ее эффект пропадет, если блоки питания по разные стороны изолирующего барьера будут просто соединены друг с другом.

Во многих новых приемопередатчиках CAN используется емкостная изоляция между входами и выходами данных и цепями подключения шины. Два слоя двуокиси кремния образуют два последовательно соединенных конденсатора, через которые передаются данные между схемами, расположенными на двух разных кристаллах, соединенных внутри корпуса.

Примером может служить ISO1042 – выпущенный компанией Texas Instruments новый изолированный приемопередатчик CAN, обеспечивающий емкостную изоляцию и защиту практически любых промышленных и автомобильных конструкций. Устройство, отвечающее требованиям стандартов физического уровня ISO 11898-2 и ISO 11898-5, поддерживает стандарты CAN до 1 Мбит/с и CAN-FD до 5 Мбит/с. Защита шины выдерживает напряжения ±70 В и синфазные напряжения ±30 В. Диапазон напряжений питания составляет от 1.7 В до 5.5 В. Поддерживаются логические уровни 1.8, 2.5, 3.3 и 5.0 В. Микросхема ISO1042 выпускается в корпусах SOIC-8 или SOIC-16.

Читайте также: Рынок 21 век шины

Реализация разделенного источника обеспечивает дополнительный уровень изоляции. Один из подходов с использованием устройства Texas Instruments показан на Рисунке 2. Микросхема генератора/драйвера SN6505 формирует 100-килогерцовый сигнал для трансформатора, выходное напряжение которого, преобразованное до требуемого уровня, затем выпрямляется и фильтруется. Трансформатор обеспечивает необходимую изоляцию питания. Отфильтрованное напряжение стабилизируется LDO регулятором (таким, скажем, как TPS76350) и питает приемопередатчик CAN. Узловые приемопередатчики и выводы интерфейса CAN микроконтроллера подключаются к шине через дифференциальные линии CANL и CANH.

Рисунок 2.Так выглядит изолированный узел CAN с изолированным источником питания
и изолированным приемопередатчиком.

Для упрощения процесса проектирования изолированных подсистем CAN и изоляции сигналов и питания CAN выпускаются различные устройства, как дискретные, так и интегральные.

Видео:Как проверить CAN шину Используем симулятор ElectudeСкачать

Как проверить CAN шину  Используем симулятор Electude

Защита шины CAN

Изолированные системы обеспечивают нормальную защиту микросхем. Однако в некоторых условиях могут возникать проблемы электростатических разрядов (ESD), высокий уровень которых способен повредить приемопередатчик. По этой причине шина должна быть каким-то образом защищена. При этом крайне важно, чтобы выбранное устройство защиты интерфейса было совместимо с приемопередатчиком.

Наилучшим решением для защиты является использование супрессоров (TVS-диодов), подключенных между каждой линией шины и землей (Рисунок 2). Эти диоды фактически представляют собой два встречно включенных стабилитрона с высоким пробивным напряжением. Максимально допустимое напряжение на выводах приемопередатчиков зависит от типа микросхемы.

Приемопередатчик ISO105 компании TI выдерживает напряжения в диапазоне от −27 В до +40 В. ISO1042 рассчитан на броски напряжения до ±70 В. Максимальное пробивное напряжение супрессоров должно быть меньше этих значений, но больше рабочего напряжения сигналов на шине. Обычно два логических уровня шины составляют менее половины напряжения питания «0» и напряжения питания «1».

Не забывайте, что добавление TVS-диодов обеспечивает защиту от ESD, но одновременно добавляет к шине емкость, ограничивающую верхние скорости передачи данных. Необходимо, чтобы дополнительная емкость была меньше 50 пФ.

Видео:лекция 403 CAN шина- введениеСкачать

лекция 403  CAN шина- введение

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Видео:поиск нерабочей can шины, часть дваСкачать

поиск нерабочей can шины, часть два

Автомобильный справочник

Видео:Экспресс диагностика CAN шины на автомобиле. №21Скачать

Экспресс диагностика CAN шины на автомобиле. №21

для настоящих любителей техники

Видео:Поиск неисправности в шине CAN мультиметром. Suzuki Grand Vitara. U1073, P1674, B1553.Скачать

Поиск неисправности в шине CAN мультиметром. Suzuki Grand Vitara. U1073, P1674, B1553.

Шина CAN в автомобиле

Can шина уровень помех

Шина CAN в автомобиле — это сеть контроллеров, предназначенных для обеспечения подключения электронных устройств, которые способны передавать и получать определенную информацию. Такая схема подключения позволила снизить негативное влияние внешних электромагнитных полей и существенно увеличить скорость передачи данных.

Can шина уровень помех

Видео:Помехи CAN шиныСкачать

Помехи CAN шины

Классификация шинных систем автомобиля

Can шина уровень помехCan шина уровень помех

Шина CAN была при­знана стандартом с момента своего появления в серийно выпускаемых автомобилях в 1991 году. Но она также часто используется и в автоматизации. Основные особенности:

  • Передача сообщений с ранжированием при­оритетов и неразрушающим арбитражем;
  • Снижение затрат благодаря использо­ванию недорогой витой пары и простого протокола с невысокими требованиями к вычислительной мощности;
  • Скорость передачи данных до 1 Тбит/с у высокоскоростной шины CAN и до 125 Кбит/с у низкоскоростной шины CAN (бо­лее низкие расходы на аппаратную часть);
  • Высокая надежность передачи данных за счет распознавания и сигнализации спора­дических и постоянных неисправностей и благодаря унифицированию сетевых про­цессов через acknowledge;
  • Принцип много абонентской шины;
  • Высокая степень готовности за счет обна­ружения неисправных станций;
  • Стандартизация по ISO 11898.

Видео:MCP2515, контроллер CAN шины с интерфейсом SPIСкачать

MCP2515, контроллер CAN шины с интерфейсом SPI

Система передачи данных по шине CAN

Логические состояния шин и шифрование

Для обмена данными шина CAN использует два состояния «доминантное» и «рецессив­ное», с помощью которых передаются ин­формационные биты. Доминантное состояние соответствует «0», а рецессивное — «1». Для шифрования передачи используется процесс NRZ (без возврата на ноль), в котором нулевое состояние не всегда возвращается в промежу­ток между двумя одинаковыми состояниями передачи и, соответственно, необходимый для синхронизации временной интервал между двумя фронтами может оказаться слишком большим.

В основном используется двухпроводной кабель, в зависимости от окружающих усло­вий, с витой или не витой парой. Две шинные линии называются CAN-H и CAN-L (рис. «Уровень напряжения передачи по CAN» ).

Читайте также: Датчики давления шин rav4 xa50

Can шина уровень помех

Двухпроводный кабель обеспечивает сим­метричную передачу данных, при которой биты передаются через обе шинные линии с использованием разных напряжений. Это уменьшает чувствительность к синфазным помехам, поскольку помехи влияют на обе линии и могут быть отфильтрованы путем создания разности (рис. «Фильтрация помех по шине CAN» ).

Однопроводный кабель представляет со­бой способ сокращения производственных затрат за счет экономии на втором кабеле. Однако общее подключение к массе, выпол­няющей функцию второго кабеля, должно быть доступно для этой цели всем пользова­телям шины. Поэтому однопроводный вари­ант шины CAN возможен только для системы связи с ограниченным монтажным простран­ством. Передача данных по однопроводному кабелю более чувствительна к излучаемым помехам — он не позволяет фильтровать импульсы помех так, как в двухпроводном кабеле. В результате на шинной линии тре­буется сигнал более высокого уровня. Это, в свою очередь, отрицательно сказывается на излучении помех. Поэтому необходимо снизить крутизну фронта импульсов сигна­лов шины по сравнению с двухпроводным кабелем. Это связано с уменьшением скоро­сти передачи данных. По этой причине одно­проводной кабель используется только для низкоскоростной шины CAN в области кузова и электроники для функций комфорта. На­пример, низкоскоростная шина CAN с двух­проводным кабелем в случае обрыва кабеля должна продолжать работать как однопрово­дная система. Однопроводное решение не описывается в спецификации CAN.

Уровни напряжения шины CAN

Высокоскоростные и низкоскоростные шины CAN используют разные уровни напряжения для передачи доминантных и рецессивных состояний. Уровни напряжения низкоско­ростной шины CAN показаны на рис. а, «Уровень напряжения передачи по CAN», а высокоскоростной — на рис. Ь, «Уровень напряжения передачи по CAN».

Высокоскоростная шина CAN в рецессив­ном состоянии на обеих линиях использует номинальное напряжение 2,5 В. В доминант­ном состоянии на CAN-H и CAN-L подается номинальное напряжение 3,5 В и 1,5 В, со­ответственно. В низкоскоростной шине CAN в рецессивном состоянии на CAN-H подается напряжение 0 В (максимум 0,3 В), на CAN-L — 5 В (минимум 4,7 В). В доминантном состоя­нии на CAN-H напряжение составляет не ме­нее 3,6 В, а на CAN-L не более 1,4 В.

Предельные значения

Для арбитражного метода в случае CAN важно, чтобы все узлы в сети видели биты идентификатора фрейма одновременно, чтобы узел, передавая бит, видел, передают ли их другие узлы. Задержки возникают из-за распространения сигнала в шине данных и обработки в трансивере. Таким образом, максимально допустимая скорость передачи данных зависит от общей длины шины. Стан­дарт ISO предусматривает скорость 1 Мбит/с для 40 м. У более длинных проводов возмож­ная скорость передачи данных примерно об­ратно пропорциональна длине провода. Сети с дальностью 1 км могут работать со скоро­стью 40 кбит/с.

Видео:Шина CAN. Часть 1. Разбираемся как работает CAN bus, разберем кадр данных до "костей".Скачать

Шина CAN. Часть 1. Разбираемся как работает CAN bus, разберем кадр данных до "костей".

Протокол CAN

Конфигурация шины

CAN работает в соответствии с принципом многорежимного управления, при котором линейная структура шины подсоединяет не­сколько блоков управления равного приори­тета ранжирования.

Адресация по содержанию CAN использует адресацию по содержанию сообщений. Каждому сообщению присваива­ется метка-идентификатор, который класси­фицирует содержание сообщения (например, о частоте вращения коленчатого вала двига­теля). В каждой станции ведется обработка только тех сообщений, чьи идентификаторы накапливаются в приемочном списке сообщений. Это называется приемочной провер­кой (рис. «Адресация и проверка приемки» ). Таким образом, CAN не требует адресов станции для передачи данных. Это облегчает адаптацию к различным уровням оборудования.

Логические состояния шины CAN

Протокол CAN основывается на двух логиче­ских состояниях: биты информации являются или «рецессивными» (логическое состояние 1), или «доминантными» (логическое со­стояние 0). Когда, по крайней мере, одной из станций передается доминантный бит, тогда перезаписываются рецессивные биты, одновременно посылаемые ото всех других станций.

Can шина уровень помех

Назначение приоритетов

Идентификатор присваивает адреса данным как содержания, так и приоритета посылае­мых сообщений. Идентификаторы, соответ­ствующие низким бинарным числам, исполь­зуют высокий приоритет и наоборот.

Арбитраж шины CAN

Каждая станция может начать передачу со­общения только после освобождения шины. Когда несколько станций начинают переда­вать сообщения одновременно, для разреше­ния создаваемых конфликтов доступа к шине используется арбитраж «wired-and» (монтаж­ное И). Сообщению с высшим приоритетом (наименьшим двоичным значением иденти­фикатора) присваивается право первого до­ступа, без задержек и потерь битов (рис. «Побитовый арбитраж» ). Передатчики реагируют на невозможность получения доступа к шине путем автомати­ческого переключения в режим приема; за­тем ими повторяется попытка передачи, как только шина снова освобождается.

Читайте также: От разных секций шин

Can шина уровень помех

Фрейм данных и формат сообщения Шина CAN поддерживает два разных фор­мата сообщений, различающихся только длиной идентификаторов. Стандартный формат включает 11 битов, в то время как расширенная версия состоит из 29 битов. Таким образом, рамка передачи данных со­держит максимум 130 битов стандартного или 150 битов расширенного формата. Это обеспечивает минимальное время ожидания до последующей передачи, которая может быть срочной. Фрейм данных состоит из семи последо­вательных полей (рис. «Фрейм данных» ). «Начало фрейма» показывает начало сообщения и синхронизирует все узлы.

Поле «арбитра» состоит из идентифи­катора сообщения и дополнительного кон­трольного бита. Во время передачи этого поля передающее устройство сопровождает передачу каждого бита проверкой о том, что сообщение более высокого приоритета, кото­рое могло бы аннулировать санкционирован­ный доступ, не передается. Контрольный бит определяет, будет ли сообщение классифи­цироваться как «фрейм данных» или «дис­танционный фрейм».

Поле «контроля» содержит код, показываю­щий количество байтов данных в поле «данных».

Поле «данных» содержит от 0 до 8 байтов. Сообщение длиной 0 данных может быть ис­пользовано для синхронизации распредели­тельных процессов.

Поле «CRC» (периодический резервный контроль) содержит контрольную сумму для обнаружения возможных помех при пере­даче.

Поле «АСК» (уведомление) содержит сигналы подтверждения, с помощью которых получа­тели подтверждают доставку сообщений.

«Конец фрейма» обозначает конец со­общения.

Затем идет «межфреймовый промежу­ток», отделяющий фрейм от следующего фрейма.

Инициация передатчика

Передатчик обычно инициирует передачу данных посредством отправки фрейма дан­ных. Однако приемник также может запро­сить данные от передатчика, отправив дис­танционный фрейм. Этот дистанционный фрейм имеет тот же идентификатор, что и со­ответствующий фрейм данных. Они различа­ются битом, стоящим после идентификатора.

Обнаружение ошибок

Контролирующими отличительными призна­ками ошибок являются:

  • 15-битовый CRC: (каждый приемник срав­нивает получаемую им последователь­ность CRC с вычисляемой последовательностью);
  • Контроль: каждый передатчик считывает с шины собственное переданное сообщение и сравнивает каждый переданный и отска­нированный бит;
  • Заполнение битами: (между началом фрейма и концом поля CRC каждого фрейма данных или дистанционного фрейма могут находиться максимум пять последовательных битов одной полярно­сти); передатчик реализует пять последовательных битов одной полярности путем вставки в поток битов бита противополож­ной полярности. После доставки сообще­ний получатели снова удаляют эти биты;
  • Проверка фреймов: (протокол CAN со­держит несколько битовых полей со сме­шанным форматом для проверки всех станций).

Обработка ошибок

При обнаружении ошибки контроллер CAN прерывает текущую передачу отправкой сигнала ошибки, состоящего из шести доминантных битов; при этом происходит со­знательное нарушение условия наполнения битами и форматов.

Локализация неисправностей

Так как неисправные станции могут значи­тельно ухудшать нагрузочный режим шины, бортовые контроллеры связи могут включать механизмы, которые позволяют различать промежуточную и постоянную ошибки из-за неисправности местной станции. Этот про­цесс базируется на статистической оценке условий возникновения ошибок.

Варианты исполнения

Изготовители полупроводников предлагают различные варианты исполнения контрол­леров CAN, различающиеся в основном воз­можностями хранения и обработки сообще­ний. Таким образом, главный компьютер может быть освобожден от операций, свя­занных с протоколом.

Стандартизация

Шина CAN стандартизирована для обмена данными в автомобилях; для низкоскорост­ной передачи (до 125 кбит/с) — ISO 11898-3, для высокоскоростной передачи (более 125 кбит/с) — ISO 11898-2 и SAE J 1939 (грузовики и автобусы).

Видео:Поиск уровня топлива в CAN шине Toyota Camry 2017Скачать

Поиск уровня топлива в CAN шине Toyota Camry 2017

CAN с таймерным управлением

Расширенный протокол CAN с возможностью работы в режиме таймерного управления на­зывается «CAN с таймерным управлением» (TTCAN). В нем можно произвольно выбрать соотношение компонентов с таймерным управлением и компонентов с управлением событиями, поэтому он полностью совме­стим с сетями CAN. TTCAN стандартизируется в ISO 11898-4.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле
    • Правообладателям
    • Политика конфиденциальности

    📽️ Видео

    STM32 CAN шина. Часть 1. Настройка и странности HALСкачать

    STM32 CAN шина. Часть 1. Настройка и странности HAL

    Поиск сигнала уровня заряда тяговой батареи электромобиля в CAN шинеСкачать

    Поиск сигнала уровня заряда тяговой батареи электромобиля в CAN шине

    CAN Считывание и определение данных уровня топлива из CAN шиныСкачать

    CAN  Считывание и определение данных уровня топлива из CAN шины

    Компьютерная диагностика авто. K-линия и CAN шинаСкачать

    Компьютерная диагностика авто. K-линия и CAN шина

    Opel Signum. Помехи в CAN шине.Скачать

    Opel Signum. Помехи в CAN шине.

    Проверка исправности CAN шиныСкачать

    Проверка исправности CAN шины

    Автомобиль не запускается, сканер не подключается: на примере FORD FOCUS 3, CAN шина (Видео 92)Скачать

    Автомобиль не запускается, сканер не подключается: на примере FORD FOCUS 3,  CAN шина (Видео 92)

    FNIRSI 2C23T CAN шина ДПКВ Осциллограф МультиметрСкачать

    FNIRSI 2C23T CAN шина  ДПКВ  Осциллограф Мультиметр
Поделиться или сохранить к себе:
Технарь знаток