- Архитектура ЭВМ
- Компоненты ПК
- Интерфейсы
- Мини блог
- Самое читаемое
- Системные платы
- Шина процессора
- Общие сведения о шине процессора
- Шина процессора на основе hub-архитектуры
- Пропускная способность шины процессора
- Шина PCIe: только ли физические ограничения влияют на скорость передачи?
- Первичный эксперимент
- Куплю слот в хорошем районе
- А что там у других плат?
- Так кто же виноват?
- 🌟 Видео
Архитектура ЭВМ
Компоненты ПК
Интерфейсы
Мини блог
Самое читаемое
Видео:Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать
Системные платы
Видео:Ширина шины: какая лучше? Простой способ выбратьСкачать
Шина процессора
Видео:Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать
Общие сведения о шине процессора
Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.
На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.
В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.
Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.
Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.
В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.
В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.
Шина процессора на основе hub-архитектуры
Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).
Читайте также: Шины r13 165 что такое lt
В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).
Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.
Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.
Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.
Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).
Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.
Пропускная способность шины процессора
Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).
Читайте также: Какое давление должно быть в шинах уаз профи
Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.
Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.
Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.
Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.
Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.
Видео:Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать
Шина PCIe: только ли физические ограничения влияют на скорость передачи?
Начну издалека. Прошлой зимой довелось мне делать USB-устройство с ядром, размещаемым в ПЛИС. Само собой, очень мне хотелось проверить реальную пропускную способность этой шины. Ведь в контроллере — там слишком много всего наверчено. Всегда можно сказать, что вот тут внесена задержка, или вон там. В случае же с ПЛИС — я вижу блок, прокачивающий данные, вот он сказал мне, что в нём данные есть. А вот я выставил, что всё обработано, и я готов принимать новую порцию (при этом, он уже принимает данные во второй буфер этой же конечной точки). Отлично, ставим готовность с первого же такта и смотрим, что получается, когда USB может «молотить» без остановки.
А получается удивительная вещь. Если USB 2.0 устройство воткнуто в «голубенький» разъём (это который USB 3.0), то скорость получается одна. Если в «чёрненький» — другая. Вот мой график зависимости скорости записи в USB от длины передаваемых данных. USB3 и USB2 — это тип разъёма, устройство всегда USB 2.0 HS.
Я пробовал в разных машинах. Результат — близок. Никто не мог объяснить мне этот феномен. Уже потом я нашёл наиболее вероятную причину. А причина очень проста. Вот свойства контроллера USB 2.0:
У контроллеров, управляющих «голубеньким» разъёмом такого нет. А разница — как раз примерно процентов 20.
Из этого мы делаем вывод, что не всегда ограничения пропускной способности определяются физическими свойствами шины. Иногда накладываются ещё какие-то вещи. Переходим с этими знаниями в наши дни.
Видео:Как понять, когда протектор износился и шины пора менятьСкачать
Первичный эксперимент
Итак. Всё начиналось весьма буднично. Шла проверка одной программы. Проверялся процесс записи данных одновременно на несколько дисков. Аппаратура простая: имеется материнская плата с четырьмя PCIe-слотами. Во все слоты воткнуты совершенно одинаковые карточки с AHCI-контроллерами, каждый из которых поддерживает исключительно PCIe x1.
Каждая карта обслуживает 4 накопителя.
И вот выясняется следующий эффект. Берём один диск и начинаем записывать на него данные. Получаем скорость от 180 до 220 мегабайт в секунду (здесь и далее, мегабайт — это 1024*1024 байт):
Берём второй накопитель. Скорость записи на него — от 170 до 190 МБ/с:
Пишем сразу на оба — получаем просадку скорости:
Суммарная скорость получается в районе 290 МБ/с. Но удивительность состоит в том, что отлаживали (так получилось) эту программу мы на тех же накопителях, но на других каналах. И там всё было хорошо. Быстро перетыкаем в те каналы (они будут идти через другую карту), получаем прекрасную работу:
Видео:НИЗКОПРОФИЛЬНЫЕ ШИНЫ ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ АВТОМОБИЛИСТСкачать
Куплю слот в хорошем районе
Сразу скажу, что винить во всём какие-то чужие компоненты не стоит. Здесь всё написано нами, начиная от самой программы, заканчивая драйверами. Так что весь путь прохождения данных может быть проконтролирован. Неизвестность наступает только когда запрос ушёл в аппаратуру.
После первичного разбора выяснилось, что скорость не ограничивается в «длинных» слотах PCIe и ограничивается в «коротких». Длинные — это куда можно вставить карты x16 (правда, один из них работает в режиме не выше x4), а короткие — только для карт x1.
Всё бы ничего, но контроллеры в текущих картах в принципе не могут работать в режиме, отличном от PCIex1. То есть, все контроллеры должны быть в абсолютно идентичных условиях, независимо от длины слота! Ан нет. Кто живёт в «длинном» — работает быстро, кто в «коротком» — медленно. Хорошо. А быстро — насколько быстро? Добавляем третий накопитель, пишем на все три.
Читайте также: Шины в ленинском районе саратова
В «коротких» слотах ограничение всё ещё в районе 290 МБ/с:
В «длинных» — в районе 400 МБ/с:
Я перерыл весь Интернет. Во-первых, через некоторое время я уже смеялся со статей, где говорится о том, что пропускная способность PCIe gen 1 и gen 2 для x1 составляет 250 и 500 МБ/с. Это «сырые» мегабайты. За счёт оверхеда (я использую это нерусское слово, чтобы обозначить служебный обмен, идущий по тем же линиям, что и основные данные) для gen 2 получается именно 400 мегабайт в секунду полезного потока. Во-вторых, я упорно не мог найти ничего про магическую цифру 290 (забегая вперёд — до сих пор не нашёл).
Отлично. Пытаемся глянуть на топологию включения наших контроллеров. Вот она (013-015 — это суффиксы имён устройств, по которым я сопоставил их, чтобы как-то различать). Зелёные —быстрые, красные — медленные.
Контроллер «015» мы даже не рассматриваем. Он живёт в привилегированном слоте, предназначенном для видеокарты. Но 013-й подключён к тому же коммутатору, что и 012-й с 014-м. Чем он отличается?
Отдельные статьи говорят, что разные карты могут отличаться параметрами Max Payload. Я изучил конфигурационное пространство всех карт — этот параметр стоит у всех в одном и том же, минимально возможном значении. Мало того, в документации на чипсет этой материнки сказано, что иного значения и быть не может.
В общем, я перерыл всё в конфигурационном пространстве — всё настроено идентично. А скорость разная! Многократно перечитал документацию на чипсет — никаких настроек пропускной способности. Приоритеты — да, что-то про них написано, но тесты же ведутся при полном отсутствии нагрузки по другим каналам! То есть дело не в них.
На всякий случай, я даже отключил работу программы по прерываниям. Нагрузка на процессор возросла до безумных величин, ведь теперь он постоянно тупо читает бит готовности, но показания скорости не изменились. Так что обвинить в проблемах эту подсистему тоже нельзя.
Видео:ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВСкачать
А что там у других плат?
Попробовали поменять материнскую плату на точно такую же. Никаких изменений. Попробовали заменить процессор (были основания считать, что он барахлит). Тоже никаких изменений скорости (но старый процессор и правда барахлил). Поставили материнскую плату более нового поколения — всё просто летает на всех слотах. Причём предельная скорость уже не 400, а 418 мегабайт в секунду, хоть в «длинных», хоть в «коротких» слотах:
Но здесь — никаких чудес. Привычным движением руки (за эти дни уже привык) считываем конфигурационное пространство и видим, что параметр Max Payload установлен не на 128, а на 256 байт.
Больше размер пакета — меньше количество пакетов. Меньше оверхед на их пересылку — больше полезных данных успевает пробежать за то же время. Всё верно.
Видео:Отключаем поэтапно память у RTX 3090 и 3060 и измеряем разницу в производительности.Скачать
Так кто же виноват?
Точного ответа на вопрос из заголовка, со ссылкой на документы, я не дам. Но мысль моя пошла по следующему пути: допустим, что ограничение потока задано внутри чипсета. Его нельзя программировать, оно задано намертво, но оно есть. Например, оно равно 290 мегабайт в секунду на каждую дифф. пару. Больше — режется уже где-то внутри чипсета на его внутренних механизмах. Поэтому в «длинном» слоте (куда можно воткнуть карты вплоть до x4) внутри чипсета для нашей карты ничего не режется, а мы упираемся в физический предел шины x1. В «коротком» же разъёме мы упираемся в это ограничение.
На самом деле, проверить это не просто, а очень просто. Втыкаем в 013-й слот не AHCI, а SAS-контроллер, который обслуживает сразу 8 накопителей и может работать в режимах PCIe вплоть до x4. Подключаем ему 4 шустрых SSD накопителя. Смотрим скорость записи — аж душа радуется:
Теперь добавляем те 4 диска, которые фигурировали в первых тестах. Скорость работы SSD предсказуемо просела:
Вычисляем суммарную скорость, проходящую через SAS-контроллер, получаем 1175 мегабайт в секунду. Делим на 4 (столько линий идёт в «длинный» слот), получаем… Барабанная дробь… 293 мегабайта в секунду. Где-то я это число уже видел!
Итак, в рамках данного проекта было доказано, что дело не в нашей программе или драйвере, а в странных ограничениях чипсета, которые наверняка «зашиты» намертво. Была выведена методика подбора материнских плат, которые могут быть использованы в проекте. А в целом, выводы делаем следующие.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🌟 Видео
ВСЯ ПРАВДА О РЕМОНТНЫХ ЖГУТАХ! РЕМОНТ ШИНЫ ЖГУТОМ! [ПРАВИЛЬНЫЙ РЕМОНТ]#1Скачать
Ремонт шины! Быстрый 100 способ своими рукамиСкачать
Секрет чернения шин от перекуповСкачать
Не ставь БОЛЬШИЕ шины пока не узнаешь ЭТО !Скачать
АвтоОрск / АвтоГаджеты / Почему нельзя ставить колеса больше заводских?Скачать
Как определить ресурс пробега новой шины | Сколько ходят шины | Когда надо менять шиныСкачать
Вот ЧЕМ надо ЧЕРНИТЬ ШИНЫ (качественно, безопасно, дешево)Скачать
Жёсткость шины и высота профиля. Размеры шин. Как выбрать.Скачать
ВСЕ МАРКИРОВКИ ШИН. БЕЗ ИСКЛЮЧЕНИЙСкачать
Хранение шин. 3 основных правила.Скачать
На какую ось ставить новые шины | Правила перестановки шинСкачать
Как шины влияют на расход топливаСкачать