Настоящий курсовой проект выполнен на основе технического задания, которое включает кинематическую схему привода ковшового элеватора, а также необходимые технологические параметры:
тяговая сила цепи F = 2,5 кН,
диаметр барабана D = 310 мм.
Новизна проекта заключается в том, что это первая самостоятельная конструкторская робота, закрепляющая навыки, полученные по дисциплине: «Детали машин», а также черчению, материаловедению, метрологии.
Объектом исследования является конический редуктор. Глубина проработки заключается в том, что расчет и проектирование основных деталей и узлов доводится до графического воплощения.
Актуализация проекта состоит в том, что умение расчета и проектирования деталей и узлов общего машиностроения востребованы в курсовых проектах по специальности, дипломном проекте, на производстве.
Основные этапы работы над проектом:
1. Кинематический и силовой расчет привода.
2. Проектные расчеты конической зубчатой передачи, волов, колеса, корпуса и крышки редуктора
3. Эскизная компоновка редуктора.
4. Выбор стандартных деталей и узлов.
5. Проверочный расчет деталей и узлов.
6. Выполнение сборочного чертежа редуктора и рабочих чертежей ведомого вала и конического колеса.
Теоретическая часть работы заключается в составлении краткого описания редуктора, разработке процесса его сборки по сборочному чертежу и назначения требований по технике безопасности и охране труда.
1.1 Краткое описание редуктора
В настоящей курсовой работе спроектирован конический одноступенчатый редуктор. Он состоит из конической зубчатой передачи, заключенной в герметичный корпус. Шестерня изготовлена заодно с валом. Валы установлены в подшипники:
ведущий – роликовые конические однорядные подшипники 7209 – установлены врастяжку;
ведомый – роликовые конические однорядные подшипники 7210 – установлены враспор.
Температурный зазор регулируется с помощью набора металлических прокладок.
Подшипники смазываем пластичным смазочным материалом – пресс-солидолом марки С ГОСТ 4366–76, закладываемым в подшипниковые камеры при монтаже.
Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до погружения колесо на всю длину зуба.
Контроль за уровнем мосла производим с помощью жезлового маслоуказателя. Для слива отработанного масла предусмотрено отверстие в нижней части корпуса.
1.2 Выбор электродвигателя, кинематический и силовой расчет
1) Определяем общий КПД передачи.
Из таблицы 2.2 [1] выписываем
КПД подшипников учтено в КПД передач, общий КПД равен
η = ηкон · ηм · ηцеп = 0,97 · 0,98 · 0,92 = 0,874
2) Определяем требуемую мощность электродвигателя.
Определяем мощность рабочей машины:
Требуемая мощность элеватора:
Рэл.дв.тр = кВт
3) Из таблицы К9 [1] выбираем двигатель, т. к. быстроходные двигатели имеют низкий ресурс и тихоходные имеют большие габариты, выбираем средне скоростной двигатель, имеющий ближайшую большую мощность:
4) Определяем общее передаточное число передачи и передаточные числа ступеней, воспользуемся рекомендацией табл. 2.3 [1].
Определяем частоту вращения вала рабочей машины:
ηр.м = об/мин
Uобщ =
Назначаем Uзуб = 3,15, тогда
Uцеп = передаточное число ступеней удовлетворяет рекомендациям [1].
5) Определяем угловые скорости валов
(р/с);
(р/с);
Uзуб = => (р/с);
Uцеп = => (р/с);
6) Определяем мощности по валам передач:
7) Определяем моменты на валах передач:
Видео:Валы и механические передачи 3D. Построение конической прямозубой передачиСкачать
М1 = (Н·м);
М2 = (Н·м);
М3 = (Н·м);
М4 = (Н·м);
1.3 Расчет зубчатой передачи
Из предыдущих расчетов вращающий момент на ведомом валу М3 = 187,9 (Н ·м);
Передаточное число редуктора
Угловая скорость ведомого вала
(р/с);
Нагрузка близка к постоянной, передача нереверсивная.
1. Так как нагрузка на ведомо валу достаточно велика, для получения компактного редуктора принимаем марку стали 35ХМ для шестерни и колеса, с одинаковой термообработкой улучшения с закалкой ТВЧ до твёрдости поверхностей зубьев 49…65 HRC, σТ = 750 МПа при предлагаемом диаметре заготовки шестерни D 3 /154,44 = 2433,3 (Н);
радиальная на шестерни и осевая на колесе:
осевая на шестерни и радиальная на колесе:
15. Коэффициент динамической нагрузки
16. Расчетное контактное напряжение по формуле (9.74 [6])
σн = МПа
σН = 899 МПа = [σН ] = 899 МПа
17. Эквивалентное число зубьев шестерни и колесо по формуле (9.46 [6])
Коэффициент формы зуба (см. § 9.10 [6])
2 –0,06 Δ =
0,1 – Δ КНВ = 3,98 – 0,003 = 3,977
18. Принимаем коэффициенты
КF В = 1,64 (см. пункт 7) – остается без изменения
19. Расчетное напряжение изгиба в основании зубьев шестерни по формуле (9.78 [6])
σF 1 = YF 1 (МПа);
1. Т.к. вал выполняем заодно с шестерней, то его материал сталь 35ХМ, тогда допустимое напряжение на кручение можно принять [τ] = 20 МПа.
Диаметр выходного участка:
dв1 = (мм);
В кинематической схеме предусмотрено соединение ведущего вала редуктора и электродвигателя, выписываем из таблицы К10 [1] диаметр вала выбранного двигателя dэ = 38 мм и проверяем соотношение.
т. к. данное соотношение выполняется, принимаем dв1 = 30 мм
2. Диаметр по монтажу: dм1 = dв1 + 5 мм = 30 + 5 = 35 (мм)
3. Диаметр цапфы: d1 = dм1 + 5 мм = 35 + 5 = 40 (мм)
4. Начинаем построение вала с прорисовки шестерни.
4.1 Под углом σ1 = 18° откладываем расстояние:
4.2 Откладываем ширину зубчатого венца:
4.3 Откладываем высоту головки зуба:
ha = me = 2,72 (мм) и высоту ножки зуба
4.4 Соединяем полученные точки с вершиной делительного конуса.
4.5 Строим буртик (dδ ) для упора подшипника:
4.6 Определяем диаметр резьбы для гайки, крепящей подшипник:
dр1 = dм1 + 5 мм = 35 + 5 = 40 (мм);
Принимаем стандартное значение резьбы для гайки М36.
Рис. 1. Эскиз ведущего вала
Видео:Расчет конической зубчатой передачи.Чертеж конического зубчатого колеса.Скачать
1.5 Проектный расчет ведомого вала
Из предыдущих расчетов известно
М3 = 187,9 (Н · м) – вращающий момент на ведомом валу редуктора.
1. Диаметр выходного участка определяем из условия прочности на кручение:
dв1 = (мм)
4. Диаметр посадочной поверхности:
Рис. 2. Эскиз ведомого вала
1.6 Конструктивные размеры колеса
Из предыдущих расчетов известно:
в = 26 мм; Re = 94,2 мм; dк = 55 мм; m = 2,34 мм;
dае2 = 181,7 мм; dе2 = 180 мм; d2 = 154,44 мм;
1. Находим диаметр ступицы стальных колес:
3. Толщина обода конических колес:
с = 0,1 Re = 0,1 · 94,2 = 9,42 (мм);
n = 0,5 mn = 0,5 · 2,34 = 1,17 (мм);
Рис. 3. Эскиз конического зубчатого колеса
1.7 Конструктивные размеры корпуса и крышки редуктора
Из предыдущих расчетов известно:
Re = 94,2 (мм) – внешнее конусное расстояние.
1. Толщина стенки конуса и крышки редуктора:
δ = 0,05 Re + 1 = 0,05 · 94,2 + 1 = 5,71 (мм); δ = 8 (мм);
δ = 0,04 Re + 1 = 0,04 · 94,2 + 1 = 4,77 (мм); δ1 = 8 (мм);
2. Толщина верхнего пояса (фланца) корпуса:
3. Толщина нижнего пояса (фланца) крышки корпуса:
4. Толщина нижнего пояса корпуса без бобышки:
р = 2,35 δ = 2,35 · 8 = 18,8 (мм) ≈20 (мм);
5. Толщина ребер основания корпуса:
7. Диаметр фундаментных болтов:
d1 = 0,072 Re +12 = 0,072 · 94,2 + 12 = 18,78 (мм);
Принимаем диаметр болтов М20.
Принимаем диаметр болтов М16.
8.2 Соединяющие основание корпуса с крышкой
Принимаем диаметр болтов М12.
9. Размеры, определяющие положение болтов d2 :
q = 0,5 d2 + d4 = 0,5 · 15 + 6 = 13,5 (мм);
Крепление крышки подшипника:
d4 = 6 (мм) (по таблице 10.3 [2]);
Рис. 4. Эскиз корпуса и крышки редуктора
1.8 Эскизная компоновка редуктора
Эскизная компоновка редуктора служит для приближенного определения положения зубчатых колес относительно опор для последовательного определения опорных реакций и проверочного расчета вала, а также проверочного расчета подшипников.
С учетом типа редуктора предварительно назначаем роликовые конические однорядные подшипники. По диаметру цапфы (dn 2 = 50 мм). Выбираем по каталогу подшипники ведомого вала 7210.
Назначаем способ смазки: зацепление зубчатой пары – окунанием зубчатого венца в масло, подшипники смазываются автономно, пластичным смазочным материалом, камеры подшипников отделяем от внутренней полости корпуса мазеудерживающими кольцами.
Определяем размеры, необходимые для построения и определения положения реакций опор:
а =
аб = (мм);
Видео:Разбираем устройство редуктора ⚙️ Коническая шестерня редуктораСкачать
аr = (мм);
f1 = 35 (мм) – определяем конструктивно
Принимаем l1 = 70 мм = 0,07 (м);
Расстояние между опорами ведомого вала:
1.9 Подбор шпонок и их проверочный расчёт
Шпоночные соединения в редукторе предусмотрены для передачи вращающего момента от полумуфты на ведущий вал, от колеса на ведомый вал и от ведомого вала на звездочку.
Все соединения осуществляем шпонками с исполнением 1.
Из предыдущих расчетов известно:
1. Соединение полумуфта – ведущий вал:
σсм =
Здесь h = 7 мм; в = 8 мм; t1 = 4 мм.
1.1 Вычисляем длину ступицы:
1.2 Вычисляем длину шпонки:
lш = lст – 5 мм = 45 – 5 = 40 (мм).
1.3 Принимаем стандартное значение:
1.4 Вычисляем рабочую длину шпонки:
1.5 Вычисляем расчетное напряжение сжатия и сравниваем его с допускаемым:
σсм = МПа
σсм = 49,7 МПа 1) УВ = (Н);
=> 2) УА = (Н);
3. Строим эпюру изгибающих моментов Мх :
;
(Н·м);
(Н·м);
;
4. Определяем реакции опор в горизонтальной плоскости
ΣМ(А) i = 0 1) Fк ·0,07 + Ft · 0,07 – XB · 0,19 = 0
ΣМ(B) i = 0 2) Fk ·0,26 + XA · 0,19 – Ft · 0,12 = 0
=> 1) XВ = (Н);
=> 2) XА = (Н);
1713,5 – 808 – 2433,3+ 1527,8 = 0
5. Строим эпюру изгибающих моментов Му :
;
(Н·м);
(Н·м);
;
6. Строим эпюру суммарных изгибающих моментов:
Видео:Коническая передача с круговыми зубьямиСкачать
МиА = (Н·м);
МиД = (Н·м);
Ми’Д = (Н·м);
7. Строим эпюру крутящих моментов:
8. Опасным является сечение Д, т. к. МиД = Мmax , концентратор напряжений – шпоночный паз.
dк2 = 55 (мм); в = 16 (мм); t2 = 4,3 (мм) (табл. К 42 [1]);
Рис. 5. Эскиз шпоночного паза
9. Определяем геометрические характеристики сечения:
Wx = 0,1 dк2 3 – (мм 3 )
Wр = 0,2 dк2 3 – (мм 3 )
10. Определяем максимальное напряжение в опасном сечении:
σmax = (МПа);
τmax = (МПа).
11. Полагаем, что нормальные напряжения изменяются по симметричному циклу, а касательные по отнулевому циклу;
τа = (МПа).
12. Из табл. 2.1–2.5 [3] выбираем коэффициенты влияния на предел выносливости.
Коэффициенты влияния абсолютных размеров поперечного сечения Кd :
20 – 0,05 Δ =
5 – Δ Кd σ = 0,81 – 0,0125 = 0,797
20 – 0,03 Δ =
5 – Δ Кd τ = 0,7 – 0,0075 = 0,693
Эффективный коэффициент концентрации напряжений Кδ (Кτ ):
Коэффициенты влияния качества обработки КF :
Коэффициент влияния поверхности упрочнения Кυ :
13. Вычисляем коэффициенты снижения предела выносливости:
(Кδ )Д =
(Кτ )Д =
14. Определяем пределы выносливости в данном сечении:
(δ-1 ) Д = (МПа);
(τ0 ) Д = (МПа);
15. Определяем запас усталостной прочности по нормальным и касательным напряжениям
Sσ =
Sτ =
16. Определяем общий запас усталостной прочности и сравниваем его с допускаемым:
S = S =
Видео:Редуктор конический i=3.5 И36.36.00.00 СБСкачать
Запас усталостной прочности обеспечен.
1.11 Выбор и проверочный расчет подшипников ведомого вала
Тип подшипника назначается в зависимости от условий работы подшипникового узла, в частности, о наличия осевой силы. Подшипник выбирается по соответствующей таблице в зависимости от диаметра цапфы.
Расчет заключается в определении расчетной динамической грузоподъемности и сравнении ее с грузоподъемностью подшипника, взятой из таблицы Сr расч ≤ Сr – условия работоспособности подшипника.
Из предыдущих расчетов известно:
dn 2 = 50 мм – диаметр цапфы
t = 80 °C в подшипниковом узле
ω3 = 28,9 (р/с) – угловая скорость вала
LH – 12000 (час) – ресурс подшипника
Характер нагрузки – умеренные толчки.
УА = 503,8 (Н) – реакция опоры в вертикальной плоскости
УВ = – 241 (Н) – реакция опоры в вертикальной плоскости
ХА = -808 (Н) – реакция опоры в горизонтальной плоскости
ХВ = 1527,8 (Н) – реакция опоры в горизонтальной плоскости
Выбираем подшипник 7210 по табл. К 29 [1] (начиная с легкой серии)
1. Определяем суммарные реакции опор:
RA = (Н);
RВ = (Н);
2. Выписываем из таблицы К 29 [1] характеристику подшипника.
Сr = 52,9 (кН); Сor = 40,6 (кН); e = 0,37; у = 1,6.
3. В соответствии с условиями работы принимаем расчетные коэффициенты.
V = 1 – коэффициент вращения, т. к. вращается внутреннее кольцо подшипника.
Кб = 1,3 – коэффициент безопасности, учитывающий влияние характеристики нагрузки на долговечность подшипника.
КТ = 1 – коэффициент, учитывающий влияние температуры на долговечность подшипника.
3.1 Определим осевые составляющие от радиальных сил
3.2 Определяем расчетные осевые силы.
3.3 Определяем соотношение RA /V·R
e = 0,37, то х = 0,4; у = 1,6.
4. Определяем эквивалентную динамическую нагрузку:
Дальнейший расчет ведем по наиболее нагруженной опоре.
5. Определяем расчетную динамическую грузоподъемность:
Сr расч = Re 2 (кН)
Р = 3,33 – для роликовых подшипников
Сr расч = 3147,6(кН).
6. Сравниваем расчетную динамическую грузоподъемность Сr расч и базовую динамическую грузоподъемность Сr :
Сr расч = 15,42 (кН) -6 м 2 /с. По табл. 10.10 [2] принимаем масло индустриальное И‑70А (по ГОСТ 20799–75). Подшипники смазывают пластичным материалом, закладываем в подшипниковые камеры, при монтаже. Сорт смазки выбираем по табл. 9.14 [2] – пресс-солидол марки С (по ГОСТ 43–66–76).
1.15 Краткие требования по охране труда и технике безопасности
Требования по технике безопасности:
а) Все вращающиеся детали должны быть закрыты защитными кожухами;
б) Корпус редуктора не должен иметь острых углов, кромок и должен быть оборудован монтажным устройством;
в) На ограждение необходимо поставить блокировку и предупредительный знак.
а) Отработанное масло сливать в предназначенные для этого емкости;
б) Вышедшие из строя детали складировать в специальных помещениях.
В курсовом проекте продумана конструкция конического редуктора, выполнены расчеты цепной передачи, валов, колеса, корпуса и крышки редуктора. По каталогам выбраны размеры шпоночных соединений ГОСТ 23360–78 для диаметров 30 и 40 и выбраны подшипники роликовые конические однорядные 7209 и 7210 ГОСТ 27365–87. Для деталей и узлов проведены необходимые проверочные расчеты.
Графическая часть (сборочный чертеж конического редуктора, чертеж колеса конического, чертеж ведомого вала) выполнена согласно требованиям ЕСКД. Продуманы требования по технике безопасности и охране труда; по сборочному чертежу описан процесс сборки редуктора.
Видео:Зубчатые передачи. Редуктор. Цилиндрические, Конические, Червячные передачи на примере.Скачать
https://evakuatorinfo.ru/chertezh-reduktora-konicheskoy-peredachi
📹 Видео
1этап компоновки конического редуктора (1часть)Скачать
Лекция 4. Конические зубчатые передачиСкачать
Кратко о передаточном числе в зубчатой передаче.Скачать
3. Узлы зубчатых редукторов, опоры валов, расчетные схемы валов, корпуса, конструкции редукторовСкачать
Редуктор. Устройство. Конструкция. Виды и типы редукторовСкачать
Конический редуктор 01 АнимацияСкачать
Видеопракитка (5.2): Расчет конических зубчатых передачСкачать
Чтение сборочного чертежа редуктора. Чтение чертежейСкачать
Детали машин. Лекция 2.4. Конические зубчатые передачиСкачать
Редуктор конический одноступенчатыйСкачать
1-титульная по коническому редукторуСкачать
Зубчатая коническая передачаСкачать
Угловые конические редукторы КОНИЧЕСКИЙ Т-ОБРАЗНЫЙ РЕДУКТОР 1:1 - 5:1 передаточные отношенияСкачать
6.4 Зубчатые конические передачиСкачать