адиабатная мощность секции (ступени) — Мощность адиабатного сжатия газа при отсутствии вязкости от начального состояния в компрессоре, секции, ступени до конечного давления в секции (ступени), подсчитываемая по массовой производительности. [ГОСТ 28567 90] Тематики компрессор EN… … Справочник технического переводчика
мощность — 3.6 мощность (power): Мощность может быть выражена терминами «механическая мощность на валу у соединительной муфты турбины» (mechanical shaft power at the turbine coupling), «электрическая мощность турбогенератора» (electrical power of the… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 28567-90: Компрессоры. Термины и определения — Терминология ГОСТ 28567 90: Компрессоры. Термины и определения оригинал документа: Hubkolbenverdichter oder Membranverdichter, Lage der Zylinder oder Membran rechtwinklig zueinander (Winkelbauart) 68 Определения термина из разных документов:… … Словарь-справочник терминов нормативно-технической документации
- Электронная библиотека
- Основные показатели работы (параметры) компрессорных машин
- Термодинамические КПД компрессора
- Основные характеристики компрессора. Производительность компрессора. Мощность компрессора
- Общая информация по компрессорам
- Рабочее давление компрессора
- Производительность компрессора
- Мощность компрессора
- 🔥 Видео
Видео:Как узнать производительность компрессора на ВЫХОДЕ. Часть 2.4.1Скачать
Электронная библиотека
Основная цель термодинамического расчета компрессора – это определение работы (мощности), которую следует затратить, чтобы получить некоторое количество газа при заданных параметрах начала и конца сжатия. Работу определяют по уравнению (9.1).
Когда процесс сжатия идет по изотерме pv = const, работа идеального «изотермического» компрессора, отнесенная к 1 кг газа, с учетом того, что
При адиабатном сжатии работа сжатия равна:
Работу «адиабатного» компрессора находят из выражения:
Пользуясь выражением (9.4), работу компрессора удобно рассчитывать с помощью hS-диаграммы.
Как адиабатный, так и изотермический процессы сжатия газа могут рассматриваться только как теоретические. В действительности процессы сжатия идут по политропе, имеющей переменный показатель. Показатель политропы зависит от интенсивности теплообмена в процессе сжатия газа в компрессоре:
· для охлаждаемого компрессора k > n > 1;
· для неохлаждаемого компрессора (центробежного, осевого) n > k.
Для политропного процесса работа сжатия равна:
Следовательно, работу «политропного» компрессора можно найти по формуле:
Среднее значение показателя политропы, как правило, определяется по параметрам газа в начале и конце процесса сжатия.
В случае охлаждаемого компрессора (рис.
lиз Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00
Видео:Увеличение производительности воздушного компрессора своими руками .Скачать
Основные показатели работы (параметры) компрессорных машин
6.1.1. Производительность (подача)
Количество газа, подаваемого компрессором в единицу времени, называется производительностью (подачей) компрессора.
Обычно производительность измеряется объемом газа, приведенным к давлению и температуре его во всасывающем патрубке (т.е. практически к атмосферным условиям Pа и Tа). В этом случае она называется объемной производительностью Qв и измеряется в м 3 /с, м 3 /мин, м 3 /ч.
Иногда подачу компрессора относят к состоянию газа при каких-либо других условиях. Например, при так называемых нормальных условиях: Р0=760 мм рт. ст. (0,1013 МПа); Т0=273,15 K (0 °C), тогда подача называется производительностью при нормальных условиях (нм 3 /мин).
Вместо объемной подачи на практике часто используется массовая производительность Gв, кг/с, которая связана с объемной подачей Qв, м 3 /с, соотношением: , где rв, кг/м 3 , – плотность воздуха на всасывании.
Удельная работа сжатия
Удельная работа сжатия (напор) в компрессоре – это работа, сообщенная 1 кг воздуха при сжатии, lк, кДж/кг. Процессы сжатия в компрессоре зависят от внешних условий. Различают четыре теоретических процессов сжатия. Отображение процессов сжатия газа от давления P1 до давления P2 в P,V— и T,s— диаграммах представлено на рис. 6.1.
Рис. 6.1. Диаграммы возможных режимов сжатия газов:
1-2из – изотермический; 1-2ад – адиабатный (изоэнтропный); политропные процессы для неохлаждаемых (n> k) – 1- и для интенсивно охлаждаемых (n 3 воздуха в процессе сжатия: P, .
Развиваемое давление количественно связано с удельной работой сжатия:
P2—P1=lкr, ,
но плотность воздуха в этом выражении следует брать при тех же параметрах воздуха, при которых определялисъ значения объема и массы.
Для характеристики процесса сжатия чаще используется понятие: степень повышения давления – >1.
Термодинамические КПД компрессора
Обычным энергетическим КПД характеризовать работу компрессора нельзя, так как при сжатии нельзя оценивать приращение энергии только энтальпией. КПД изотермического процесса сжатия (самого экономичного) по этой методике будет равен нулю.
Поэтому совершенство процессов сжатия оценивают при помощи относительных термодинамических КПД:
– изотермический КПД;
– изоэнтропный (адиабатный) КПД,
где li – удельная внутренняя работа действительного процесса сжатия (без учета механических потерь). Изотермический КПД hиз – применяют для оценки процессов в компрессорах с интенсивным водяным охлаждением. Для такого процесса изотермический процесс является эталонным. Изоэнтропный (адиабатный) КПД hад – используют для оценки эффективности процессов сжатия в неохлаждаемых или воздушно-охлаждаемых компрессорах. Для таких компрессоров эталонным является изоэнтропный процесс.
Обычно для поршневых компрессоров в зависимости от интенсивности охлаждения – hиз=0,65-0,85.
Для неохлаждаемых компрессоров: центробежных – hад=0,8-0,9; и осевых – hад=0,85-0,95.
Эксергетический КПД
Более полно термодинамическую эффективность оценивает эксергетический КПД компрессорной установки:
, (6.4)
где E1 – эксергия потока сжатого воздуха на выходе из компрессорной установки, кВт; Eвэр – эксергия теплоты охлаждающей компрессор воды, если она полезно использована на производстве, кВт; Eвх – эксергия подведенной к компрессору энергии (для привода), кВт; – эксергия затрат энергии во вспомогательных элементах КУ (система осушки сжатого воздуха, градирни, циркуляционные насосы и пр.), кВт
Значение полной эксергии сжатого воздуха E1, кВт, вычисляется по соотношению
, (6.5)
где Gв – массовая производительность компрессорной установки, кг/с. Удельная эксергия сжатого воздуха e, кДж/кг, определяется из выражения:
, (6.6)
где i, s – энтальпия и энтропия сжатого воздуха, которые определяются по термодинамическим таблицам или диаграммам при параметрах воздуха на выходе из КУ, кДж/(кг×К); iо.с, sо.с. – энтальпия и энтропия воздуха (окружающей среды), котрые определяются при давлении и температуре на входе в компрессор, кДж/(кг×К).
Мощность компрессора
При известных термодинамических КПД hиз и hад легко вычисляется внутренняя работа компрессора li, кДж/кг по известным соотношениям:
или , (6.7)
где значения lиз и lад, кДж/кг, определяются по соотношениям (6.1) и (6.3).
Но кроме внутренних потерь в компрессоре есть еще механические потери, которые оцениваются механическим КПД. Для обычных серийных конструкций можно принимать hм=0,96-0,98, тогда эффективная работа компрессора lе, кДж/ кг, находится из соотношений:
или . (6.8)
При известной массовой подаче компрессора Gв, кг/с, потребляемая мощность Ne, кВт, составит:
или . (6.9)
Читайте также: Воздушные фильтры для компрессоров в казани
Знание этой мощности позволит определить требуемую мощность привода.
Видео:Все что нужно знать о мощности компрессора!Скачать
Термодинамические КПД компрессора
Обычным энергетическим КПД характеризовать работу компрессора нельзя, так как при сжатии нельзя оценивать приращение энергии только энтальпией. КПД изотермического процесса сжатия (самого экономичного) по этой методике будет равен нулю.
Поэтому совершенство процессов сжатия оценивают при помощи относительных термодинамических КПД:
– изотермический КПД;
– изоэнтропный (адиабатный) КПД,
где li – удельная внутренняя работа действительного процесса сжатия (без учета механических потерь). Изотермический КПД hиз – применяют для оценки процессов в компрессорах с интенсивным водяным охлаждением. Для такого процесса изотермический процесс является эталонным. Изоэнтропный (адиабатный) КПД hад – используют для оценки эффективности процессов сжатия в неохлаждаемых или воздушно-охлаждаемых компрессорах. Для таких компрессоров эталонным является изоэнтропный процесс.
Обычно для поршневых компрессоров в зависимости от интенсивности охлаждения – hиз=0,65-0,85.
Для неохлаждаемых компрессоров: центробежных – hад=0,8-0,9; и осевых – hад=0,85-0,95.
Дата добавления: 2015-06-10 ; просмотров: 4899 ;
Видео:Как определить производительность обезличенного компрессора?Скачать
Основные характеристики компрессора. Производительность компрессора. Мощность компрессора
Видео:Как высчитать производительность компрессора!Скачать
Общая информация по компрессорам
Компрессоры, как и другие сложные технические устройства, обладают массой разнообразных характеристик, варьирующихся в больших пределах. Однако можно выделить ряд величин, являющихся основными для устройства. Именно они определяют сферу применения компрессора, и на их основе проводится расчет и подбор компрессорного оборудования под конкретную задачу. Прочие характеристики являются второстепенными и в большинстве случаев сами зависят от величины основных параметров. Второстепенные характеристики также оказывают влияние на конструкцию, работу и общую эффективность компрессора, но в значительно меньшей степени.
Величина основных характеристик определяет условия эксплуатации компрессора, а также те показатели потока сжатого газа, которые могут быть достигнуты с помощью этого компрессора. Удобство заключается в том, что по набору небольшого числа параметров можно определить сферу применения компрессора, либо наоборот очертить круг подходящих для проставленной задачи устройств. Подбор может проводиться как по одной основной характеристике, так и по набору из нескольких, в зависимости от требований, предъявляемых к компрессору.
Наиболее влияние на применимость компрессора оказывают следующие характеристики:
- рабочее давление;
- производительность;
- мощность.
Несомненно, прочие характеристики, такие как: габаритные размеры, вес, температура газа на выходе, шумность и т.д., также могут оказывать существенное влияние на расчет и итоговый выбор компрессора, однако основной выбор подходящего типа устройства строится именно на производительности и рабочем давлении. К примеру, если для определенной задачи требуется подавать воздух под большим давлением, но с относительно небольшим расходом, то такое соотношение требуемых основных характеристик сразу же отсеивает группу компрессоров низкого давления, таких как центробежные или водокольцевые. Попытки достичь требуемого рабочего давления на установках таких типов окажутся или невозможными, или же экономически нецелесообразными. В то же время компрессоры высокого давления по определению оказываются более подходящими под условия. Уточнение типа устройства может происходить уже по различным второстепенным характеристикам и результатам технико-экономического анализа. Поршневые компрессоры обойдутся дешевле в плане капитальных затрат, а винтовые смогут обеспечить большую чистоту воздуха, но все они будут удовлетворять требованиям по основным характеристикам.
Обычно покупатель не располагает, а чаще просто не может располагать, полными данными по тому, компрессор с какими параметрами ему необходим. В наличие лишь основные требования, которые должен удовлетворять компрессор: сколько и под каким давлением нужно подавать газ, и насколько ограничена мощность, которую можно будет подвести к устройству. Иными словами рабочее давление, производительность и потребляемая мощность. Несомненно, этот базовый набор требований может быть дополнен и уточнен такими пунктами, как коррозионная и химическая стойкость деталей, шумность, равномерность подачи и т.д. На основании этих данных могут быть подобраны и сконструированы несколько компрессоров, и каждый окажется в состоянии выполнить поставленную задачу. Отличия будут заключаться в деталях, по которым покупатель сможет выбрать оптимальный вариант, а критерием оптимальности в таком случае может быть любая из второстепенных характеристик, к примеру, величина потребляемой электроэнергии (в случае компрессорного агрегата с электродвигателем) или стоимость обслуживания агрегата.
Несмотря на то, что вышеперечисленные характеристики относятся к основным, существует еще ряд параметров, которые зачастую также оказывают соизмеримое влияние на выбор компрессора. Так химический и физический состав газа может оказывать решающее влияние, поскольку от способности компрессора перекачивать такую среду будет зависеть даже не его эффективность, а возможность работы как таковая. Плюс к этому, замена материала деталей на химически стойкий или износостойкий способна поднять стоимость все устройства в несколько раз. В других случаях крайне важными могут оказаться требования, предъявляемые к сжатому газу на выходе из компрессора, к его чистоте, равномерности подачи и температуре, а не только к показателям расхода и давления. К примеру, в пищевой промышленности предъявляются повышенные требования к чистоте сред и веществ, поэтому принципиально недопустимо использовать масляную смазку винтов в винтовом компрессоре, если есть вероятность попадания смазочного материала в поток газа, при этом значения других характеристик не будут иметь никакого влияния на окончательное решение по применимости. Отличие таких существенных, но все же второстепенных характеристик от основных заключается в том, что степень их влияния неодинакова от случая к случаю, в то время как рабочее давление, производительность и мощность важны всегда.
Видео:Как узнать производительность компрессор? ВидеоСкачать
Рабочее давление компрессора
Эту характеристику вообще можно назвать основополагающей, так как она отражает основную функцию компрессора – сжимать газ, что приводит к повышению его давления. Развиваемое компрессором давление обычно измеряться в Паскалях (Па), барах (бар) или атмосферах (атм), но также могут быть использованы миллиметры ртутного столба (мм рт. ст.), килограмм-сила на квадратный сантиметр (кгс/см 2 ) или фунт на квадратный дюйм (PSI). Наиболее распространены единицы измерения Па и бар, которые соотносятся следующим образом 1 бар = 0,1 МПа. Также рабочее давление подразделяют на избыточное (Pизб) и абсолютное (Pабс). Их значения отличаются на величину атмосферного давления (Pатм) и связаны соотношением Ризб = Рабс — Ратм.
При выборе компрессора нужно иметь ввиду тот факт, что создаваемое устройством давление постепенно снижается по пути к рабочему инструменту или аппарату. Падение давления может происходить на протяжении всего газопровода и в так называемых местных сопротивлениях: клапанах, изгибах газопровода, задвижках и т.д. Рабочее давление компрессора должно покрывать все потери на пути к потребителю и на выходе соответствовать предъявляемым требованиями.
Читайте также: Рейтинг автомобильных компрессоров от прикуривателя
В отдельных случаях важным условием могут быть условия подачи сжатого газа. Так поршневые компрессоры в силу своей конструкции создают пульсирующий поток сжатого газа, в то время как в винтовых компрессорах сжатие среды происходит равномерно без колебаний во времени. В таких случаях, например, как напыление лаков и красок, равномерность подачи является важным условием корректной работы. Снижение пульсаций давления компрессора может быть достигнуто различными способами. Так поршневые компрессоры могут иметь несколько рабочих камер, циклы работы которых смещены во времени относительно друг друга, за счет чего происходит частичное сглаживание суммарного потока. Однако чаще используется устройство под названием ресивер – сосуд, в котором происходит накопление сжатого газа, поступающего из компрессора, что позволяет почти полностью исключить пульсацию исходящего из него потока газа.
В зависимости от развиваемого давления компрессоры делятся на:
- вакуумные (разрежение более 0,05 МПа);
- низкого давления (от 0,15 до 1,2 МПа);
- среднего давления (от 1,2 до 10 МПа);
- высокого давления (от 10 до 100 МПа);
- сверхвысокого давления (более 100 МПа).
Видео:Теперь Компрессор качает лучше чем новый.Скачать
Производительность компрессора
Под производительностью компрессора подразумевается количество газа, нагнетаемого в единицу времени. Обычно она измеряется в м 3 /мин, л/мин, м 3 /час и т.д. Величина производительности компрессора может быть указана для стороны всасывания и стороны нагнетания, которые не равны друг другу, поскольку в процессе сжатия газ меняет свой объем. Для случая производительности на входе обычно берутся стандартные условия, то есть при атмосферном давлении и температуре 20°C. Выбор способа указания производительности компрессора может зависеть от удобства восприятия в зависимости от сферы применения устройства. Пересчет расхода газа с условий на входе на выходные условия может быть осуществлен с помощью специальных формул. Также перерасчет производительности может потребоваться в случае, если газ имеет другую температуру.
В зависимости от величины производительности компрессоры принято делить на устройства:
- большой производительности (более 100 м 3 /мин);
- средней производительности (от 10 до 100 м 3 /мин);
- малой производительности (до 10 м3/мин).
Производительность поршневого компрессора
Производительность конкретного компрессора преимущественно зависит от его геометрии и типа. Наиболее прост и нагляден в этом случае будет поршневой компрессор, так как размеры его рабочей камеры напрямую влияют на производительность. Ее можно представить, как объем рабочей камеры, умноженный на количество циклов хода поршня, совершаемых в единицу времени, или, если отталкиваться от геометрических параметров деталей поршневого узла, как площадь поперечного сечения цилиндра (F), помноженная на ход поршня (S) и на частоту вращения вала (n). Однако такое возможно только в идеальном случае. В действительности из-за конструкции клапанов и самого цилиндра и поршня не весь газ вытесняется из рабочей камеры. Небольшая часть его остается, и пространство, занимаемое им, называется вредным пространством. Это делается намерено, чтобы избегать ударов поршня о торцевую стенку камеры, что могло бы повлечь быстрый выход компрессора из строя.
Обозначим объем, описываемый поршнем, как Vп, тогда вредный объем может быть выражен как Vв=V-Vп, где V–объем рабочей камеры. Для учета вредного пространства используется соответствующий коэффициент ε=(V-Vп)/Vп. То есть вредный объем может быть определен также по формуле Vв=ε∙Vп.
Газ, занимающий вредный объем, влияет так же и на всасывание новой порции газа, так как этот процесс не начнется до тех пор, пока остаточный газ не расширится до определенной величины, во время чего поршень успеет пройти некоторое расстояние, а значит и всасывание будет неполным относительно идеального случая. Для учета этого явления вводят такой параметр как объемный КПД, рассчитываемый по формуле λ0=Vд/Vп, где Vд–действительный засасываемый объем газа. Сам коэффициент может быть рассчитан по следующей формуле:
где:
λ0 – объемный КПД;
ε – коэффициент вредного пространства;
p1 – давление на входе, Па;
p2 – давление на выходе, Па;
m – показатель политропы.
Таким образом, производительность поршневого компрессора одинарного действия определяется по формуле:
Если используется поршень двойного действия, то расчет производительности не может быть рассчитан как простое удвоение производительности одной рабочей камеры. Требуется уточнение, так как одна из рабочих камер будет частично занята штоком поршня, из-за чего ее производительность будет меньше чем у камеры без штока. Уточненная формула выглядит следующим образом:
где:
Vп2 – производительность поршневого насоса двойного действия;
f – площадь поперечного сечения штока.
Производительность винтового компрессора
Объемную производительность такого компрессора можно представить, как суммарный объем полостей, ограниченных винтами и корпусом, подаваемых на выход за единицу времени. В идеальном случае, когда отсутствуют какие-либо потери и протечки, теоретическая производительность винтового компрессора (с двумя винтами) может быть рассчитана по следующей формуле:
где:
Qт – теоретическая производительность винтового компрессора, м 3 /с;
l – длина винта, м;
m1 – количество заходов ведущего винта;
n1 – частота вращения ведущего винта, с -1 ;
f1 – площадь впадины ведущего винта, м 2 ;
m2 – количество заходов ведомого винта;
n2 – частота вращения ведомого винта, с -1 ;
f2 – площадь впадины ведомого винта, м 2 .
С учетом того, что обычно выполняется равенство m1∙n1 = m2∙n2 = m∙n, формулу теоретической производительности винтового компрессора можно представить в виде:
Действительный расход оказывается меньше теоретического, что закономерно. Сказывается влияние различных перетечек внутри компрессора и утечек газа во внешнюю среду через уплотнения. Математически это учитывается коэффициентом подачи, поэтому действительная производительность будет равна:
Qд – действительная производительность;
Qп – величина протечек через уплотнения;
ηп – коэффициент подачи.
Производительность центробежного компрессора
Принцип перекачивания среды в центробежном компрессоре идентичен принципу работы центробежного насоса с той разницей, что газ при сжатии претерпевает уменьшение объема, что приводит к увеличению его плотности. Производительность таких компрессоров обычно считают на входе в устройство и при нормальных условиях, что удобно для использования. Начальное значение этого параметра, как и выходное давление, обычно предварительно задается перед расчетом, после чего высчитываются геометрические размеры элементов рабочего колеса. К примеру, формула, связывающая производительность центробежного компрессора и размеры входного сечения колеса выглядит следующим образом:
где:
Q – производительность центробежного компрессора, м³/с;
vв – скорость потока газа на входе в колесо, м/с;
d1 – наружный диаметр ступицы колеса, м;
d2 – минимальный диаметр покрывающего диска, м;
Видео:Компрессор. Как увеличить рабочий объем воздуха без сварки и пайкиСкачать
Мощность компрессора
В общем случае мощность, следуя стандартному определению, – это величина совершаемой за период времени работы к длительности этого периода. В отношении компрессора – это произведение производительности по газу на работу по его сжатию. Такую мощность называют теоретической и рассчитывают по формуле:
Читайте также: Установка компрессора от автотурбо
где:
Nт – теоретическая мощность, кВт;
Q – производительность, м 3 /мин;
ρ – плотность газа, кг/м 3 ;
A – теоретическая работа сжатия газа, дж/кг.
Однако стоит заметить, что теоретическая мощность не совпадает с мощностью, которую требуется подвести к компрессору для его работы, и с мощностью, которую должен вырабатывать двигатель, подключаемый к компрессору. Связано это с явлением потери мощности, что численно описывается набором коэффициентов полезного действия. Осуществляемый в компрессоре процесс сжатия обладает своим показателем КПД (в зависимости от типа процесса), а также в компрессоре часть подводимой мощности теряется при механической передаче. В связи с этим мощность, которую необходимо подать на входной вал компрессора, называют мощностью на валу или эффективной мощностью, связанную с теоретической мощностью следующей формулой:
где:
Nэ – эффективная мощность, кВт;
ηм – механический КПД компрессора;
ηпр – КПД процесса сжатия газа.
Если рассматривать компрессорную установку, оснащенную также двигателем и передачей, то в ней будут наблюдаться дополнительные потери мощности, отражаемые двумя КПД ηд и ηпер, соответственно. Тогда мощность Nд, которую необходимо подвести к двигателю компрессорной установки для ее работы, будет равна:
где:
Nд – мощность двигателя компрессорной установки, кВт;
ηд – КПД двигателя;
ηпер – КПД механической передачи.
Учет КПД всех элементов компрессорной установки крайне важен. Один и тот же двигатель может оказаться неподходящим для одной и той же задачи по сжатию газа, если она будет осуществляться компрессорами разного типа, поскольку их КПД могут сильно отличаться. Мощности, идущей непосредственно на сжатие газа, может попросту не хватить вследствие больших потерь. К примеру, в среднем КПД винтовых компрессоров составляет 95%, в то время как у поршневых компрессоров эта величина оказывается ближе к 80%, то есть разница в эффективности использования подводимой мощности может составлять 10-15% в пользу винтового устройства.
Мощность поршневого компрессора
Расчет мощности для поршневых компрессоров, осуществляющих сжатие до давления не более чем 10 МПа, с высокой точностью может проводиться по формулам, в которых газ рассматривается как идеальный. Однако в компрессорах с большим максимальным давлением сжатия (более 10 МПа) в расчетах начинает оказывать влияние тот факт, что перекачиваемый газ является не идеальным. Ключевое отличие идеального газа от не идеального (реального) заключается в принятии допущения, что молекулы газа не взаимодействуют между собой, в то время как в реальном газе такое взаимодействие имеет место и при больших давлениях может оказывать существенное влияние на поведение газа. Формула теоретической мощности, учитывающая эти факторы, выглядит следующим образом:
где:
Nт – теоретическая мощность, кВт;
Q – производительность компрессора, м 3 /с;
ρ – плотность газа, кг/м 3 ;
i1 – энтальпия газа перед сжатием, Дж/кг;
i2 – энтальпия газа после сжатия, Дж/кг.
Приведенная формула относится к случаю одноступенчатого компрессора. Если сжатие происходит в несколько ступеней, то разница энтальпий (i2-i1) в формуле должна быть заменена на сумму разниц энтальпий на каждой ступени. Если совершаемая работа по сжатию одинакова для каждой ступени, то уравнение принимает вид:
где:
n – число ступеней;
i1, i2 – начальная и конечная энтальпии первой ступени, Дж/кг.
На примере рисунка мощность первой ступени N1=(Q∙ρ∙n∙(i2-i1))/1000, мощность второй ступени N2=(Q∙ρ∙n∙(i3-i2))/1000, и мощность третьей ступени N3=(Q∙ρ∙n∙(i4-i3))/1000. При допущении, что изменение энтальпии на каждой ступени одинаково, то есть (i2-i1)=(i3-i2)=(i4-i3). При общем количестве ступеней (n=3) получим:
Мощность винтового компрессора
При прохождении газом винтового компрессора происходят постоянные потери мощности, которые осуществляются разными путями. Поскольку изготавливаемые винты не идеальны по форме и размерам, постоянно происходят обратные перетечки газа из полости в полость в направлении из области нагнетания в область всасывания, что обуславливает часть потерь. Также энергия газа расходуется на трение о винты и корпус, при ударах и т.д. В силу этих причин мощность, расходуемая на сжатие газа в устройстве оказывается больше, чем теоретическая, потребовавшаяся на сжатие того же газа в идеальных условиях. Такая мощность называется индикаторной и может быть определена по формуле:
где:
Nи – мощность винтового компрессора (индикаторная), кВт;
k – поправочный коэффициент (от 1,05 до 1,18 в зависимости от размера устройства);
Q – производительность при входных условиях, м 3 /с;
pв – давление на всасывании, Па;
pн – давление на нагнетании, Па;
ε – степень сжатия (геометрическая);
m – показатель политропы.
В остальном же расчет полной мощности всего компрессорного агрегата, состоящего из непосредственно компрессора, двигателя и передачи, соответствует другим типам компрессоров. Мощность самого компрессора увеличивается относительно индикаторной на величину механических потерь, происходящих в процессе его работы. Часть мощности теряется на передаче, и часть в самом двигателе. Учет этих потерь осуществляется введением соответствующих коэффициентов полезного действия.
Мощность центробежного компрессора
Поток газа, проходя через центробежный компрессор, теряет часть совей энергии за счет гидравлических потерь. Величина этих потерь описывается гидравлическим коэффициентом полезного действия (ηг), который связывает теоретическую мощность (Nт), которая потребовалась бы на сжатие газа в идеальных условиях, и индикаторную мощности (Nи):
Также, вследствие неизбежных утечек газа из рабочего пространства реальный расход газа в итоге отличается от теоретического, что также приводит к дополнительным потерям мощности, характеризуемым объемным КПД (ηо). Полезная мощность (Nп), которую необходимо сообщить рабочему колесу для сжатия газа будет равна:
Полезную мощность можно также рассчитать исходя из замеров реальных параметров компрессора по формуле:
где:
Nп – полезная мощность, Вт;
Vд – действительный расход, м 3 /с;
Hд – действительный напор, м;
p – средняя величина давления до и после сжатия, обычно принимаемая как среднее арифметическое, Па.
Общая мощность компрессора, которую необходимо сообщить валу, называется мощностью на валу и может быть рассчитана из индикаторной мощности с учетом механических потерь в компрессоре:
где:
Nв – мощность на валу компрессора, Вт;
ηм – механический КПД.
С учетом всех потерь полный КПД (ηп) центробежного компрессора будет выражен следующим уравнением:
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🔥 Видео
9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать
Упала мощность компрессора. Ищем причину!Скачать
Суперчарджер. Приводной компрессор | Science Garage На РусскомСкачать
Как настроить КОМПРЕССОР правильноСкачать
Работа винтового компрессора, его принцип действия и устройство.Скачать
Виды и технические характеристики компрессоровСкачать
Как выбрать компрессор?Скачать
Воздушный компрессор. Тест реальной производительности (3/3)Скачать
Какой компрессор лучше? Что нужно знать о компрессоре для гаража? Какой компрессор для покраски автоСкачать
КОМПРЕСОР ФВ-6 (производительность)Скачать
Как настроить регулятор давления воздуха на гаражном компрессоре QUATTRO ELEMENTI KM 50-380Скачать
Можно красить с помощью 24л компрессора?Скачать