Что такое интерфейсы материнской платы шины

Шины в ПК используются для передачи данных от ЦП к другим устройствам компьютера. Для согласования передачи данных к отдельным компонентам, которые работают на собственной частоте, используется чипсет – набор контроллеров, которые объединены в Северный и Южный мосты. Северный мост управляет обменом информацией с оперативной памятью и видеосистемой, Южный мост отвечает за функционирование других устройств, которые подключаются через соответствующие разъемы – жесткие диски, накопители, устройства, которые находятся на системной плате (встроенная аудиосистема, сетевое устройство и др.) и внешние устройства (относительно системной платы) – клавиатура, мышь и др.

Что такое интерфейсы материнской платы шины

Рисунок 1. Схема системной платы

Связь между всеми устройствами системной платы и устройствами, которые подключаются к ней, обеспечивается через шины и логические устройства, размещенные в микросхемах чипсета. Производительность ПК зависит от архитектуры этих элементов.

$ISA$ ($Industry \ Standard \ Architecture$). Архитектура промышленного стандарта $ISA$ была внедрена около $20$ лет назад. Эта архитектура позволила установить связь между всеми устройствами системного блока и сделала возможным выполнять простое подключение новых устройств через стандартные разъемы (слоты). Несмотря на низкую пропускную способность шины $ISA$, которая составляет до $5,5$ Мб/с, она еще используется в некоторых ПК для подключения «медленных» периферийных устройств, таких как звуковые карты и модемы.

$IESA$ ($Extended \ ISA$) является расширением стандарта $ISA$, который отличается увеличенным разъемом и большей производительностью (до $32$ Мб/с). Для современных системных плат стандарт $IESA$ считается устаревшим. Выпуск системных плат с разъемами $ISA/EISA$ и устройств, которые к ним подключаются, практически прекращен.

Готовые работы на аналогичную тему

$VLB$ ($VESA \ Local \ Bus$ – локальная шина стандарта $VESA$). Понятие «локальная шина» впервые появилось в конце $80$-х гг и связано с тем, что при внедрении ЦП III и IV поколений частоты основной шины, в качестве которой использовалась шина $ISA/EISA$, стало недостаточно для обмена между ЦП и оперативной памятью. Локальная шина, которая имела повышенную частоту, связала между собой ЦП и память в обход основной шины. Позже в эту шину встроили интерфейс для подключения видеоадаптера, требующий повышенной пропускной способности. Разработанный стандарт $VLB$, позволивший поднять тактовую частоту локальной шины до $50$ МГц, обеспечил пропускную способность до $130$ Мб/с.

Однако предельная частота локальной шины и ее пропускная способность зависят от количества устройств, которые к ней подключены. Например, при частоте $50$ МГц к шине можно подключить одно устройство; при частоте $40$ МГц – два; при частоте $33$ МГц – три устройства. Использование шины $VLB$ было вытеснено шиной $PCI$.

Интерфейс $PCI$ ($Peripheral \ Component \ Interconnect$ – стандарт подключения внешних компонентов) был введен еще во времена ЦП $486$ и первых версий Pentium. По сути это тот же интерфейс локальной шины, которая связывает ЦП с оперативной памятью с врезанными разъемами для подключения периферийных устройств. Для связи с основной шиной ПК, которой оставалась $ISA/EISA$, использовались мосты $PCI$ ($PCI \ Bridge$) – специальные интерфейсные преобразователи. В современных ПК функции моста $PCI$ выполняют микросхемы чипсета.

В данном интерфейсе частота шины составляет $33$ МГц и пропускная способность – $132$ Мб/с. Последние версии $PCI$ обеспечивают частоту до $66$ МГц и производительность $264$ М/с для $32$-разрядных и $528$ Мб/с для $64$-разрядных данных.

Важное нововведение, которое было реализовано этим стандартом, получило название режима $plug-and-play$, который впоследствии оформился в промышленный стандарт на самоустанавливающиеся устройства. Суть этого стандарта состоит в том, что после подключения периферийного устройства через разъем шины $PCI$ происходит обмен данными между устройством и системной платой, после чего устройство автоматически подключается.

Конфликты между устройствами за обладание одними и теми же ресурсами (номерами прерываний, адресами портов и каналами прямого доступа к памяти) вызывают массу проблем у пользователей при установке устройств, подключаемых к шине $ISA$. С появлением интерфейса $PCI$ и с оформлением стандарта $plug-and-play$ появилась возможность выполнять установку новых устройств с помощью автоматических программных средств — эти функции во многом были возложены на операционную систему.

В современных ПК шина $PCI$ используется только для подключения периферийных устройств.

$FSB$ ($Front \ Side \ Bus$) используется для связи ЦП и оперативной памяти и обеспечивает частоту $100–200$ МГц, которая является одним из основных параметров для потребителя. Современные типы памяти ($DDR \ SDRAM$, $RDRAM$) могут передавать несколько сигналов за $1$ такт шины $FSB$, вследствие чего повышается скорость обмена данными с оперативной памятью.

$AGP$ ($Advanced \ Graphic \ Port$ – усовершенствованный графический порт) разработан для удовлетворения требований видеоадаптеров. Частота $AGP$ соответствует частоте $PCI – 33$ МГц или $66$ МГц, но имеет более высокую пропускную способность за счет передачи нескольких сигналов за $1$ такт. Количество сигналов, которые передаются за $1$ такт, указан в виде множителя, например $АGP4X$ (скорость передачи до $1066$ Мб/с).

$PCMCIA$ ($Personal \ Computer \ Memory \ Card \ International \ Association$ – стандарт международной ассоциации производителей плат памяти для ПК) обеспечивает интерфейс подключения плоских карт памяти небольших размеров и используется в портативных ПК.

$USB$ ($Universal \ Serial \ Bus$ – универсальная последовательная магистраль) определяет способ взаимодействия ПК с внешними устройствами и позволяет подключать до $256$ устройств с последовательным интерфейсом. Устройства могут подключаться цепочками (каждое последующее устройство подключается к предыдущему). Производительность шины $USB$ относительно невысокая, но вполне подходит для клавиатуры, мыши, модема, джойстика, принтера и т.п. Преимуществом использования шины $USB$: практически невозможность возникновения конфликтов между различными устройствами, возможность подключения и отключения устройства при включенном ПК и возможность объединения нескольких ПК в локальную сеть без использования специального оборудования и программного обеспечения.

Видео:Что такое PCIe? Все виды скоростного интерфейса подключения PCIe 1.0-6.0 (x1 x4 x8 x18 x32)Скачать

Что такое PCIe? Все виды скоростного интерфейса подключения PCIe 1.0-6.0 (x1 x4 x8 x18 x32)

Основные интерфейсы материнской платы

Видео:Лекция №4 "Интерфейсы и шины ПК" по ТСИСкачать

Лекция №4 "Интерфейсы и шины ПК" по ТСИ

Интерфейсы компьютера.

Интерфейс – совокупность средств сопряжения и связи, обеспечивающая эффективное взаимодействие систем или частей.

В интерфейсе обычно предусмотрено сопряжение на двух уровнях:

— механическом (провода, элементы связи, типы соединений, разъемы, номера контактов ит.д.)

— логическом (сигналы, их длительность, полярности, частоты и амплитуда, протоколы взаимодействия).

Все интерфейсы ЭВМ можно разделить на внутренние и внешние:

— внутренние – система связи и сопряжения узлов и блоков ПК между собой;

— внешние – обеспечивают связь ПК с внешними (периферийными) устройствами и другими компьютерами.

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Внутренние интерфейсы ПК.

Существуют два варианта организации внутреннего интерфейса:

— многосвязный интерфейс: каждый блок ПК соединен с прочими блоками своими локальными проводами; многосвязный интерфейс иногда применяется в качестве периферийного интерфейса (для связи с внешними устройствами ПК);

— односвязный интерфейс: все блоки ПК связаны друг с другом через общую, или системную шину.

В подавляющем большинстве современных ПК в качестве системного интерфейса используется системная шина (совокупность линий связи, по которым информация передается одновременно). Под системной шиной обычно понимается шина между процессором и подсистемой памяти. Шины характеризуются разрядностью (количество линий связи в шине, т.е. число битов, которое может быть передано по шине одновременно) и частотой (частота, с которой передаются последовательные биты информации по линиям связи).

Если интерфейс является общепринятым, например, утвержденным на уровне международных соглашений, то он называется стандартным.

Основные интерфейсы материнской платы

Внутренние интерфейсы предназначены для подключения компонентов, расположенных внутри системного блока. Все контроллеры и шины внутренних интерфейсов размещаются на системной плате.

К важнейшим внутренним интерфейсам относятся:

— системная шина с разъемом процессора;

— шина памяти с разъемами модулей памяти;

— шины и слоты плат расширения;

— шины и порты накопителей (жесткий диск, дисковод, DVD);

— шина и разъемы электропитания;

— линии и порты интерфейса управления питанием;

Интерфейс ISA (Industry Standard Architecture Computing) разрешает связать между собой все устройства системного блока, а также обеспечивает простое подключение новых устройств через стандартные слоты. Пропускная способность составляет до 5,5 Мбайт в секунду. В компьютерах может использоваться лишь для подсоединения внешних устройств, которые не требуют большой пропускной способности (звуковые карты, модемы), в настоящее время не используется.

Что такое интерфейсы материнской платы шины

EISA (Extended ISA) – расширение стандарта ISA до 32 разрядов, пропускная способность возросла до 32х Мбайт в секунду, позволяет подключать к шине более одного ЦПУ. Как и стандарт ISA этот стандарт исчерпал свои возможности и в будущем выпуск плат, которые поддерживают эти интерфейсы прекратиться.

Что такое интерфейсы материнской платы шины

VLB (VESA local Bus) – интерфейс локальной шины стандарта VESA. Локальная шина соединяет процессор с оперативной памятью в обход основной шины. Она работает на большей частоте, чем основная шина и позволяет увеличить скорость передачи данных. Пропускная способность до 130 Мбайт в секунду, рабочая тактовая частота 50 МГц, но она зависит от кол-ва устройств, подсоединенных к шине. Что является главным недостатком интерфейса VLB.

Читайте также: Паркетная пила с направляющей шиной festool

Что такое интерфейсы материнской платы шиныVLB SVGA-картаЧто такое интерфейсы материнской платы шиныСлоты VLB и ISA на материнской карте

PCI (Periphera lComponent Interconnect) – стандарт подключения внутренних устройств, введенный в ПК на базе процессора Pentium; по своей сути это интерфейс локальной шины с разъемами для подсоединения внешних устройств. Данный интерфейс поддерживает частоту шины до 66 МГц и обеспечивает быстродействие до 264 Мбайт в секунду. Независимо от кол-ва подсоединенных устройств, важным нововведением этого интерфейса является поддержка механизма (plug – and — play), суть которого состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит автоматическая конфигурация этого устройства.

Что такое интерфейсы материнской платы шиныБелые разъемы на материнской плате — 32-разрядные PCI.Что такое интерфейсы материнской платы шиныРазъем 64-разрядной PCI в PowerMacintosh G4

FSB (Front Side Bus) – начиная с процессора PentiumPro, для связи с оперативной памятью используется специальная шина FSB.

Что такое интерфейсы материнской платы шины

AGP (Advanced Graphic Port) – специальный шинный интерфейс для подключения видеоадаптеров. Разработан в связи с тем, что параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Частота от 33 до 66 МГц, пропускная способность до 1066 Мбайт в секунду.

Видео:Лекция "Интерфейсы (часть I). RS-232/422/485. SPI"Скачать

Лекция "Интерфейсы (часть I). RS-232/422/485. SPI"

Лекция 1 «Предмет и основные понятия информатики» 3

2. Шины и основные шинные интерфейсы материнских плат

С другими устройствами, и в первую очередь с оперативной памятью, процессор связан группами проводников, которые называются шинами. Основных шин три:

Адресная шина. Данные, которые передаются по этой шине трактуются как адреса ячеек оперативной памяти. Именно из этой шины процессор считывает адреса команд, которые необходимо выполнить, а также данные, с которыми оперируют команды. В современных процессорах адресная шина 32-разрядная, то есть она состоит из 32 параллельных проводников.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и наоборот. В ПК на базе процессоров Intel Pentium шина данных 64-разрядная. Это означает, что за один такт на обработку поступает сразу 8 байт данных.

Командная шина. По этой шине из оперативной памяти поступают команды, выполняемые процессором. Команды представлены в виде байтов. Простые команды вкладываются в один байт, но есть и такие команды, для которых нужно два, три и больше байта. Большинство современных процессоров имеют 32-разрядную командную шину, хотя существуют 64-разрядные процессоры с командной шиной.

Шины на материнской плате используются не только для связи с процессором. Все другие внутренние устройства материнской платы, а также устройства, которые подключаются к ней, взаимодействуют между собой с помощью шин. От архитектуры этих элементов во многом зависит производительность ПК в целом.

Основные шинные интерфейсы материнских плат:

ISA (Industry Standard Architecture). Разрешает связать между собой все устройства системного блока, а также обеспечивает простое подключение новых устройств через стандартные слоты. Пропускная способность составляет до 5,5 Мбайт/с. В современных компьютерах может использоваться лишь для подсоединения внешних устройств, которые не требуют большей пропускной способности (звуковые карты, модемы и т.д.).

EISA (Extended ISA). Расширение стандарта ISA. Пропускная способность возросла до 32 Мбайт/с. Как и стандарт ISA, этот стандарт исчерпал свои возможности и в будущем выпуск плат, которые поддерживают эти интерфейсы прекратится.

VLB (VESA Local Bus). Интерфейс локальной шины стандарта VESA. Локальная шина соединяет процессор с оперативной памятью в обход основной шины. Она работает на большей частоте, чем основная шина, и позволяет увеличить скорость передачи данных. Позже, в локальную шину «врезали» интерфейс для подключения видеоадаптера, который требует повышенной пропускной способности, что и привело к появлению стандарта VLB. Пропускная способность — до 130 Мбайт/с, рабочая тактовая частота — 50 МГц, но она зависит от количества устройств, подсоединенных к шине, что является главным недостатком интерфейса VLB.

PCI (Peripherial Component Interconnect). Стандарт подключения внешних устройств, введенный в ПК на базе процессора Pentium. По своей сути, это интерфейс локальной шины с разъемами для подсоединения внешних компонентов. Данный интерфейс поддерживает частоту шины до 66 МГц и обеспечивает быстродействие до 264 Мбайт/с независимо от количества подсоединенных устройств. Важным нововведением этого стандарта является поддержка механизма plug-and-play, суть которого состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит автоматическая конфигурация этого устройства.

FSB (Front Side Bus). Начиная с процессора Pentium Pro для связи с оперативной памятью используется специальная шина FSB. Эта шина работает на частоте 100-133 МГц и имеет пропускную способность до 800 Мбайт/с. Частота шины FSB является основным параметром, именно она указывается в спецификации материнской платы. За шиной PCI осталась лишь функция подключения новых внешних устройств.

AGP (Advanced Graphic Port). Специальный шинный интерфейс для подключения видеоадаптеров. Разработан в связи с тем, что параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Частота этой шины — 33 или 66 МГц, пропускная способность до 1066 Мбайт/с.

USB (Universal Serial Bus). Стандарт универсальной последовательной шины определяет новый способ взаимодействия компьютера с периферийным оборудованием. Он разрешает подключать до 256 разных устройств с последовательным интерфейсом, причем устройства могут подсоединяться цепочкой. Производительность шины USB относительно небольшая и составляет 1,55 Мбит/с. Среди преимуществ этого стандарта следует отметить возможность подключать и отключать устройства в «горячем режиме» (то есть без перезагрузки компьютера), а также возможность объединения нескольких компьютеров в простую сеть без использования специального аппаратного и программного обеспечения.

3. Внутренняя память

Под внутренней памятью понимают все виды запоминающих устройств, расположенные на материнской плате. К ним относятся оперативная память, постоянная память и энергонезависимая память.

Оперативная память RAM (Random Access Memory)

Память RAM — это массив кристаллических ячеек, способных сохранять данные. Она используется для оперативного обмена информацией (командами и данными) между процессором, внешней памятью и периферийными системами. Из нее процессор берет программы и данные для обработки, в нее записываются полученные результаты. Название «оперативная» происходит от того, что она работает очень быстро и процессору не нужно ждать при считывании данных из памяти или записи. Однако, данные сохраняются лишь временно при включенном компьютере, иначе они исчезают.

По физическому принципу действия различают динамическую память DRAM и статическую память SRAM . Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать электрический заряд. Недостатки памяти DRAM: медленнее происходит запись и чтение данных, требует постоянной подзарядки. Преимущества: простота реализации и низкая стоимость.

Ячейки статической памяти можно представить как электронные микроэлементы — триггеры, состоящие из транзисторов. В триггере сохраняется не заряд, а состояние (включенный/выключенный). Преимущества памяти SRAM: значительно большее быстродействие. Недостатки: технологически более сложный процесс изготовления, и соответственно, большая стоимость.

Микросхемы динамической памяти используются как основная оперативная память, а микросхемы статической — для кэш-памяти.

Каждая ячейка памяти имеет свой адрес, выраженный числом. В современных ПК на базе процессоров Intel Pentuim используется 32-разрядная адресация. Это означает, что всего независимых адресов есть 232, то есть возможное адресное пространство составляет 4,3 Гбайт. Однако, это еще не означает, что именно столько оперативной памяти может быть в системе. Предельный размер объема памяти определяется чипсетом материнской платы и обычно составляет несколько сотен мегабайт.

Оперативная память в компьютере размещена на стандартных панельках, которые называются модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Конструктивно модули памяти имеют два выполнения — однорядные ( SIMM — модули ) и двурядные ( DIMM — модули ). На компьютерах с процессорами Pentium однорядные модули можно применять лишь парами (количество разъемов для их установления на материнской плате всегда четное). DIMM — модули можно устанавливать по одному. Комбинировать на одной плате разные модули нельзя.

Основные характеристики модулей оперативной памяти:

SIMM — модули имеют объем 4, 8, 16, 32, 64 мегабайт; DIMM — модули — 16, 32, 64, 128, 256, 512 Мбайт. Время доступа показывает, сколько времени необходимо для обращения к ячейкам памяти, чем меньше, тем лучше. Измеряется в наносекундах. SIMM — модули — 50-70 нс, DIMM — модули — 7-10 нс.

Читайте также: Шины в рассрочку липецке без банков

Постоянная память ROM (Read Only Memory)

В момент включения компьютера в его оперативной памяти отсутствуют любые данные, поскольку оперативная память не может сохранять данные при отключенном компьютере. Но процессору необходимы команды, в том числе и сразу после включения. Поэтому процесор обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес указывает на память, которую принято называть постоянной памятью ROM или постоянным запоминающим устройством (ПЗУ). Микросхема ПЗУ способна продолжительное время сохранять информацию, даже при отключенном компьютере. Говорят, что программы, которые находятся в ПЗУ, «зашиты» в ней — они записываются туда на этапе изготовления микросхемы. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System).

Основное назначение этих программ состоит в том, чтобы проверить состав и трудоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками.

Энергонезависимая память CMOS

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами BIOS, но такими средствами невозможно обеспечить роботу со всеми возможными устройствами (в связи с их огромным разнообразием и наличием большого количества разных параметров). Но для своей работы программы BIOS требуют всю информацию о текущей конфигурации системы. По очевидной причине эту информацию нельзя сохранять ни в оперативной памяти, ни в постоянной. Специально для этих целей на материнской плате есть микросхема энергонезависимой памяти, которая называется CMOS. От оперативной памяти она отличается тем, что ее содержимое не исчезает при отключении компьютера, а от постоянной памяти она отличается тем, что данные можно заносить туда и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы.

Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате. В этой памяти сохраняются данные про гибкие и жесткие диски, процессоры и т.д. Тот факт, что компьютер четко отслеживает дату и время, также связанн с тем, что эта информация постоянно хранится (и обновляется) в памяти CMOS. Таким образом, программы BIOS считывают данные о составе компьютерной системы из микросхемы CMOS, после чего они могут осуществлять обращение к жесткому диску и другим устройствам.

Что такое материнская плата? Какие компоненты персонального компьютера на ней находятся?

В чем состоит выполнение программ центральным процессором?

Какие основные параметры процессора? Что характеризует тактовая частота и в каких единицах она измеряется?

Что такое кэш-память? Уровни кэш-памяти?

Для чего предназначенны шины? Какие есть типы шин?

Какие шинные интерфейсы материнской платы вы знаете?

Чем отличается оперативная память от постоянной памяти?

Что такое RISC-процессоры? В чем состоит их отличие от CISC-процессоров?

В какой памяти сохраняются программы BIOS?

Какая информация сохраняется в энергонезависимой памяти?

Какие вы знаете типы оперативной памяти? Какая между ними разница?

Видео:МАТЕРИНСКАЯ ПЛАТА – Гид для новичковСкачать

МАТЕРИНСКАЯ ПЛАТА – Гид для новичков

Лекция 5 «Персональный компьютер: внешняя память»

Накопители на жестких магнитных дисках

Накопители на гибких магнитных дисках

Накопители на оптических дисках

1. Накопители на жестких магнитных дисках

Внешняя память — это память, реализованная в виде внешних, относительно материнской платы, устройств с разными принципами хранения информации и типами носителя, предназначенных для долговременного хранения информации. В частности, в внешней памяти хранится все программное обеспечение компьютера. Устройства внешней памяти могут размещаться как в системном блоке компьютера, так и в отдельных корпусах. Физически, внешняя память реализована в виде накопителей. Накопители — это запоминающие устройства, предназначенные для продолжительного (что не зависит от электропитания) хранения больших объемов информации. Емкость накопителей в сотни раз превышает емкость оперативной памяти или вообще неограниченная, когда речь идет о накопителях со сменными носителями.

Накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители с сменными и постоянными носителями. Привод — это объединение механизма чтения-записи с соответствующими электронными схемами управления. Его конструкция определяется принципом действия и видом носителя. Носитель — это физическая среда хранения информации, по внешнему виду может быть дисковым или ленточным. По принципу запоминания различают магнитные, оптические и магнитооптические носители. Ленточные носители могут быть лишь магнитными, в дисковых носителях используют магнитные, магнитооптические и оптические методы записи-считывания информации.

Самыми распространенными являются накопители на магнитных дисках, которые делятся на накопители на жестких магнитных дисках (НЖМД) и накопители на гибких магнитных дисках (НГМД), и накопители на оптических дисках , такие как накопители CD-ROM, CD-R, CD-RW и DVD-ROM.

Накопители на жестких магнитных дисках (НЖМД)

НЖМД — это основное устройство для долговременного хранения больших объемов данных и программ. Другие названия: жесткий диск, винчестер, HDD (Hard Disk Drive). Внешне, винчестер представляет собой плоскую, герметически закрытую коробку, внутри которой находятся на общей оси находятся несколько жестких алюминиевых или стеклянных пластинок круглой формы. Поверхность любого из дисков покрыта тонким ферромагнитным слоем (вещество, которое реагирует на внешнее магнитное поле), собственно на нем хранятся записанные данные. При этом запись проводится на обе поверхности каждой пластины (кроме крайних) с помощью блока специальных магнитных головок. Каждая головка находится над рабочей поверхностью диска на расстоянии 0,5-0,13 мкм. Пакет дисков вращается непрерывно и с большой частотой (4500-10000 об/мин), поэтому механический контакт головок и дисков недопустим.

Запись данных в жестком диске осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля в щели между поверхностью и головкой, что приводит к изменению стационарного магнитного поля ферромагнитных частей покрытия диска. Операция считывания происходит в обратном порядке. Намагниченные частички ферромагнитного покрытия являются причиной электродвижущей силы самоиндукции магнитной головки. Электромагнитные сигналы, которые возникают при этом, усиливаются и передаются на обработку.

Работой винчестера руководит специальное аппаратно-логическое устройство — контроллер жесткого диска. В прошлом это была отдельная дочерняя плата, которую подсоединяли через слоты к материнской плате. В современных компьютерах функции контроллера жесткого диска выполняют специальные микросхемы, расположенные в чипсете.

В накопителе может быть до десяти дисков. Их поверхность разбивается на круги, которые называются дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт: 512 отведено для записи нужной информации, остальные под заголовок (префикс), определяющий начало и номер секции и окончание (суффикс), где записана контрольная сумма, нужная для проверки целостности хранимых данных. Секторы и дорожки образуются во время форматирования диска. Форматирование выполняет пользователь с помощью специальных программ. На неформатированный диск не может быть записана никакая информация. Жесткий диск можно разбить на логические диски. Это удобно, поскольку наличие нескольких логических дисков упрощает структуризацию данных, хранящихся на жестком диске.

Существует огромное количество разных моделей жестких дисков многих фирм, таких как Seagate, Maxtor, Quantum, Fujitsu и т.д. Для обеспечения совместимости винчестеров, разработаны стандарты на их характеристики, определяющие номенклатуру соединительных проводников, их размещение в переходных разъемах, электрические параметры сигналов. Распространенными являются стандарты интерфейсов IDE (Integrated Drive Electronics) или ATA и более продуктивные EIDE (Enhanced IDE) и SCSI (Small Computer System Interface). Характеристики интерфейсов, с помощью которых винчестеры связаны с материнской платой, в значительной степени определяют производительность современных жестких дисков.

Среди других параметров, которые влияют на быстродействие HDD следует отметить следующие:

скорость обращения дисков — в наше время выпускаются накопители EIDE с частотой обращения 4500-7200 об/мин, и накопители SCSI — 7500-10000 об/мин;

емкость кэш-памяти — во всех современных дисковых накопителях устанавливается кэш-буфер, ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт;

среднее время доступа — время (в миллисекундах), на протяжении которого блок головок смещается с одного цилиндра на другой. Зависит от конструкции привода головок и составляет приблизительно 10-13 миллисекунд;

время задержки — это время от момента позиционирования блока головок на нужный цилиндр до позицирования конкретной головки на конкретный сектор, другими словами, это время поиска нужного сектора;

Читайте также: Шины росава 185 70 r14

скорость обмена — определяет объемы данных, которые могут быть переданы из накопителя к микропроцессору и в обратном направлении за определенные промежутки времени; максимальное значение этого параметра равно пропускной способности дискового интерфейса и зависит от того, какой режим используется: PIO или DMA; в режиме PIO обмен данными между диском и контроллером происходит при непосредственном участии центрального процессора, чем больше номер режима PIO, тем выше скорость обмена; работа в режиме DMA (Direct Memory Access) разрешает передавать данные непосредственно в оперативную память без участия процессора; скорость передачи данных в современных жестких дисках колеблется в диапазоне 30-60 Мбайт/с.

2. Накопители на гибких магнитных дисках (НГМД)

НГМД или дисковод вмонтирован в системный блок. Гибкие носители для НГМД выпускают в виде дискет (другое название флоппи-диск). Собственно, носитель — это плоский диск со специальной, достаточно плотной пленкой, покрытой ферромагнитным слоем и помещенной в защитный конверт с подвижной задвижкой в верхней части. Дискеты используются, в основном, для оперативного переноса небольших объемов информации с одного компьютера на другой. Данные, записанные на дискете можно защитить от стирания или перезаписи. Для этого нужно передвинуть маленькую защитную задвижку в нижней части дискеты таким образом, чтобы образовалось открытое окошко. Для того, чтобы разрешить запись, эту задвижку следует переместить назад и закрыть окошко.

Лицевая панель дисковода выведена на переднюю панель системного блока, на ней расположены карман, закрытый шторкой, куда вставляют дискету, кнопка для вынимания дискеты и лампочка-индикатор. Дискета вставляется в дисковод верхней задвижкой вперед, ее нужно вставить в карман накопителя и плавно продвинуть вперед до щелчка. Правильное направление вставления дискеты помечено стрелкой на пластиковом корпусе. Чтобы вынуть дискету из накопителя, нужно нажать на его кнопку. Световой индикатор на дисководе показывает, что устройство занято (если лампочка горит, вынимать дискету не рекомендуется). В отличие от жесткого диска, диск в НГМД приводится во вращение только при команде чтения или записи, в другое время он находится в покое. Головка чтения-записи во время работы механически контактирует с поверхностью дискеты, что приводит к быстрому изнашиванию дискет.

Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки получаются во время форматирования дискеты. Сейчас дискеты поставляются отформатироваными.

Основными параметрами дискеты является технологический размер (в дюймах), плотность записи и полная емкость. По размерам различают 3,5-дюймовые дискеты и 5,25-дюймовые дискеты (сейчас уже не используются). Плотность записи может быть простой SD (Single Density), двойной DD (Double Density) и высокой HD (High Density). Стандартная емкость 3,5-дюймовой дискеты — 1,44 Мбайт, возможно использование дискет емкостью 720 Кбайт. В настоящее время стандартом являются дискеты размером 3,5 дюйма, высокой плотности HD, имеющие емкость 1,44 Мбайта.

Во время пользования дискетой следует придерживаться таких правил:

не касаться рабочей поверхности дискеты;

не снимать металлическую задвижку, загрязненная дискета может повредить головки ;

сохранять дискеты подальше от источника магнитных полей;

перед использованием проверить дискету на наличие вирусов с помощью антивирусной программы.

3. Накопители на оптических дисках

Начиная с 1995 года в базовую конфигурацию персонального компьютера вместо дисководов на 5,25 дюймов начали включать дисковод CD-ROM. Аббревиатура CD-ROM (Compact Disk Read Only Memory) переводится как постоянное запоминающее устройство на основе компакт-дисков. Принцип действия этого устройства состоит в считывании цифровых данных с помощью лазерного луча, который отражается от поверхности диска. В качестве носителя информации используется обычный компакт-диск CD. Цифровая запись на компакт-диск отличается от записи на магнитные диски высокой плотностью, поэтому стандартный CD имеет емкость порядка 650-700 Мбайт. Такие большие объемы характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относятся к аппаратным средствам мультимедиа. Кроме мультимедийных изданий (электронные книги, энциклопедии, музыкальные альбомы, видеофильмы, компьютерные игры) на компакт-дисках распространяется разнообразное системное и прикладное программное обеспечения больших объемов (операционные системи, офисные пакеты, системы программирования и т.д.)

Компакт-диски изготовляют из прозрачного пластика диаметром 120 мм. и толщиной 1,2 мм. На пластиковую поверхность напыляется слой алюминия или золота. В условиях массового производства запись информации на диск происходит путем выдавливания на поверхности дорожки, в виде ряда углублений. Такой подход обеспечивает двоичную запись информации. Углубление (pit — пит), поверхность (land — лэнд). Логический нуль может быть представлен как питом, так и лэндом. Логическая единица кодируется переходом между питом и лэндом. От центра к краю компакт-диска нанесена единственная дорожка в виде спирали шириной 4 микрона с шагом 1,4 микрона. Поверхность диска разбита на три области. Начальная (Lead-In) расположена в центре диска и считывается первой. В ней записано содержимое диска, таблица адресов всех записей, метка диска и другая служебная информация. Средняя область содержит основную информацию и занимает большую часть диска. Конечная область (Lead-Out) содержит метку конца диска.

Для штамповки существует специальная матрица-прототип (мастер-диск) будущего диска, которая выдавливает дорожки на поверхности. После штамповки, на поверхность диска наносят защитную пленку из прозрачного лака.

Накопитель CD-ROM содержит:

электродвигатель, который вращает диск;

оптическую систему, состоящую из лазерного излучателя, оптических линз и датчиков и предназначенную для считывания информации с поверхности диска;

микропроцессор, который руководит механикой привода, оптической системой и декодирует прочитанную информацию в двоичный код.

Компакт-диск раскручивается электродвигателем. На поверхность диска с помощью привода оптической системы фокусируется луч из лазерного излучателя. Луч отражается от поверхности диска и сквозь призму подается на датчик. Световой поток превращается в электрический сигнал, который поступает в микропроцессор, где он анализируется и превращается в двоичный код.

Основные характеристики CD-ROM:

скорость передачи данных — измеряется в кратных долях скорости проигрывателя аудио компакт-дисков (150 Кбайт/сек) и характеризует максимальную скорость с которой накопитель пересылает данные в оперативную память компьютера, например, 2-скоростной CD-ROM (2x CD-ROM) будет считывать данные с скоростью 300 Кбайт/сек., 50-скоростной (50x) — 7500 Кбайт/сек.;

время доступа — время, нужное для поиска информации на диске, измеряется в миллисекундах.

Основной недостаток стандартных CD-ROM — невозможность записывания данных, но существуют устройства однократной записи CD-R и многоразовой записи CD-RW.

Накопитель CD-R (CD-Recordable)

Внешне похожи на накопители CD-ROM и совместимые с ними по размерам дисков и форматам записи. Позволяют выполнить одноразовую запись и неограниченное количество считываний. Запись данных осуществляется с помощью специального программного обеспечения. Скорость записи современных накопителей CD-R составляет 48х.

Накопитель CD-RW (CD-ReWritable)

Используются для многоразовой записи данных, причем можно как просто дописать новую информацию на свободное пространство, так и полностью перезаписать диск новой информацией (предыдущие данные уничтожаются). Как и в случае с накопителями CD-R, для записи данных необходимо установить в системе специальные программы, причем формат записи совместимый с обычным CD-ROM. Скорость записи современных накопителей CD-RW составляет 24х.

Накопитель DVD (Digital Video Disk)

Устройство для чтения цифровых видеозаписей. Внешне DVD-диск похож на обычный CD-ROM (диаметр — 120 мм, толщина 1,2 мм), однако отличается от него тем, что на одной стороне DVD-диска может быть записано до 4,7 Гбайт, а на двух — до 9,4 Гбайт. В случае использования двухслойной схемы записи на одной стороне можно разместить уже до 8,5 Гбайт информации, соответственно на двух сторонах — около 17 Гбайт. DVD-диски допускают перезапись информации.

Важнейшим фактором, сдерживающим широкое применение накопителей CD-R, CD-RW и DVD, является высокая стоимость как их самих, так и сменных носителей.

Что такое внешняя память? Какие разновидности внешней памяти вы знаете?

Что такое жесткий диск? Для чего он предназначен? Какую емкость имеют современные винчестеры?

Каким образом осуществляются операции чтения и записи в НЖМД?

В чем состоит операция форматирования магнитных дисков?

Какие есть типы стандартных дисковых интерфейсов?

Какие параметры влияют на быстродействие винчестера? Каким образом?

Что такое флоппи-диск? Что общее и различное между ним и жестким диском?

Каких правил следует придерживаться во время пользования дискетой?

Какие вы знаете разновидности накопителей на оптических дисках? Чем они различаются между собою?

Каким образом происходит считывание информации с компакт-дисков?

В чем измеряется скорость передачи данных в накопителях на оптических носителях?

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    📺 Видео

    Лекция №4.2 "Интерфейсы и шины ПК (часть 2)" по ТСИСкачать

    Лекция №4.2 "Интерфейсы и шины ПК (часть 2)" по ТСИ

    Цифровые интерфейсы и протоколыСкачать

    Цифровые интерфейсы и протоколы

    Шины ввода-выводаСкачать

    Шины ввода-вывода

    Системные шины персонального компьютера для ...Скачать

    Системные шины персонального компьютера для ...

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

    Всё об интерфейсе SATAСкачать

    Всё об интерфейсе SATA

    Распределение линий PCI-Express в компьютереСкачать

    Распределение линий PCI-Express в компьютере

    Что такое материнская плата (о комплектующих понятным языком)Скачать

    Что такое материнская плата (о комплектующих понятным языком)

    Материнская плата: устройство и принцип работы. Что такое VRM, сокет, чипсет, BIOS. Разъёмы и схемыСкачать

    Материнская плата: устройство и принцип работы. Что такое VRM, сокет, чипсет, BIOS. Разъёмы и схемы

    Системная шина персонального компьютера PCIСкачать

    Системная шина персонального компьютера PCI

    PCI и PCI-Express что можно подключитьСкачать

    PCI и PCI-Express что можно подключить

    Что такое SPDIF? Цифровой интерфейс на звукозаписывающей студии.Скачать

    Что такое SPDIF? Цифровой интерфейс на звукозаписывающей студии.

    Как узнать какой порт SATA2 или SATA3 в ноутбукеСкачать

    Как узнать какой порт SATA2 или SATA3 в ноутбуке

    Шина компьютера, оперативная память, процессор и мостыСкачать

    Шина компьютера, оперативная память, процессор и мосты

    Разъёмы ssd дисков - интерфейс подключения ide sata micro msata m.2 ngff nvme pci-e slimline ahciСкачать

    Разъёмы ssd дисков - интерфейс подключения ide sata micro msata m.2 ngff nvme pci-e slimline ahci
Поделиться или сохранить к себе:
Технарь знаток