Что такое картер в компрессоре

Картер поршневого компрессора ( рис. 13) изготовляют из чугуна. В торцовых стенках картера установлены коренные подшипники 6 коленчатого вала 5, в боковых стенках предусмотрены окна, закрываемые крышками 21, для осмотра и разборки кривошипно-шатунного механизма. [1]

При производстве ремонтных работ в картере поршневого компрессора проворачивание коленчатого вала при помощи буксовки не допускается. На ограждении маховика вывешивается плакат: Не буксовать. [2]

Нормальная работа системы смазки характеризуется следующими признаками: уровень масла в картере поршневых компрессоров находится в пределах между 2 / 3 и 1 / 2 высоты смотрового стекла; давление масла, подаваемого масляным насосом в систему смазки, соответствует рекомендациям завода-изготовителя ( превышает давление в картере у поршневых компрессоров на 50 — 400 кПа); температура масла в картере поршневого компрессора ниже 50 С при температуре окружающего воздуха до 30 С; нагрев сальника не выше 60 С; пропуск масла из сальников хла-доновых компрессоров отсутствует; вытекание масла через сальниковое уплотнение аммиачных компрессоров в количестве не более одной капли в 3 мин; количество масла, заправляемого в картер компрессора для восполнения уноса, находится в пределах, указанных в инструкции. [3]

Закрывают запорный всасывающий вентиль у компрессора и после снижения избыточного давления в картере поршневого компрессора или во всасывающей полости ротационного компрессора до 20 — 30 кПа ( 0 2 — 0 3 кгс / см2) выключают электродвигатель. У двухступенчатого компрессора сначала закрывают всасывающий вентиль цилиндра низкой ступени, затем — цилиндра высокой ступени. [4]

Для контроля уровня раздела жидких и газообразных сред ( смазки в баках и других аппаратах; масла в картерах поршневых компрессоров ; жидкости, периодически продуваемой из аппаратуры компрессора) применяются различные уровнемеры: поплавковые, буйковые, емкостные, пьезоэлектрические, манометрические и дифманометрические, радиоактивные, ультразвуковые и др. На рудничных компрессорных станциях получили распространение в основном уровнемеры манометрического и поплавкового типов. [5]

Нормальная работа системы смазки характеризуется следующими признаками: уровень масла в картере поршневых компрессоров находится в пределах между 2 / 3 и 1 / 2 высоты смотрового стекла; давление масла, подаваемого масляным насосом в систему смазки, соответствует рекомендациям завода-изготовителя ( превышает давление в картере у поршневых компрессоров на 50 — 400 кПа); температура масла в картере поршневого компрессора ниже 50 С при температуре окружающего воздуха до 30 С; нагрев сальника не выше 60 С; пропуск масла из сальников хла-доновых компрессоров отсутствует; вытекание масла через сальниковое уплотнение аммиачных компрессоров в количестве не более одной капли в 3 мин; количество масла, заправляемого в картер компрессора для восполнения уноса, находится в пределах, указанных в инструкции. [6]

При работе компрессора часть масла уносится в систему. В связи с этим уровень масла в картере поршневого компрессора , в маслоотделителе и маслосборнике у винтового и ротационного компрессоров понижается. К причинам повышенного уноса масла из поршневого компрессора относят перейолнение картера маслом, высокое давление в системе смазки, высокую температуру пара хладагента после сжатия в компрессоре, повышенное давление в картере, износ поршневых колец, поршня, цилиндра, неудовлетворительную работу маслосъемных колец, вспенивание масла во фреоновых компрессорах, вызванное попаданием в картер жидкого фреона, наличие неплотностей в системе смазки. [7]

При работе компрессора часть масла, используемого для смазки, уносится в систему. В связи с этим уровень масла в картере поршневого компрессора , в маслоотделителе ] и маслосборнике у винтового и ротационного компрессоров понижается. [8]

При работе компрессора часть масла, используемого для смазки, уносится в систему. В связи с этим уровень масла в картере поршневого компрессора , в маслоотделителе и маслосборнике у винтового и ротационного компрессоров понижается. [10]

Механизм образования взрывоопасной смеси весьма многообразен. При эксплуатации компрессора высокая температура неохлаждаемого воздуха вызывает интенсивное испарение смазочного масла. Кроме того, оно разлагается с выделением взрывоопасных газов — чистого водорода и легких углеводородов. Масло и нагар, отлагающиеся на поверхностях цилиндров, клапанов, маслоотбойников, обвязочных воздуховодов и воздухосборников, могут окисляться, в результате чего возможно образование нестойких взрывоопасных продуктов. Известны случаи, когда взрывалась смесь, образованная в картере поршневого компрессора в результате перегрева масла. Учитывая, что повышенный расход масла не только важный показатель эксплуатационного характера, но и предвестник серьезной опасности, его необходимо контролировать и ежемесячно регистрировать в журнале. Расход масла на каждый узел ( особенно на цилиндры и сальники) выше норм, указанных в заводской конструкции, должен быть сигналом о необходимости остановки агрегата для выяснения причины и ликвидации неисправности. [11]

Конструкции поршневых компрессоров

2.2.1. Конструкции узлов поршневого компрессора.

Поршневой компрессор состоит из цилиндров и поршней, имеет всасывающие и на­гнетательные клапаны, расположен­ные обычно в крышках цилиндров. В поршневых компрессорах используется кривошипно-шатунный механизм с коленчатым валом. При вращении коленчатого вала соединенный с ним шатун сооб­щает поршню возвратно-поступа­тельное движение. При движении поршня к нижней мертвой точке, в цилиндре снижается давление, и хладагент через всасы­вающий клапан поступает в ци­линдр. При обратном ходе поршня пары хладагента сжимаются и при превышении давления паров в цилинд­ре давления в нагне­тательном патрубке, пары холодиль­ного агента открывают нагнетатель­ный клапан и поступают в нагнета­тельный трубопровод. При сжатии паров также повышается их температура, поэтому цилиндр обязательно охлаждается или водой, поступающей в охлаждаю­щую рубашку цилиндра или воздухом. В последнем случае цилиндры снаружи имеют оребренную поверхность. На рис. 2.2 показана схема 8-цилиндрового компрессора с 4-рядным (VV – образным) расположением цилиндров.

Рис.2.2. Схема сальникового компрессора.

Каждая шатунная шейка коленчатого вала имеет по четыре шатуна 12. На рисунке полностью показаны только по одному шатуну на каждой шей­ке, для остальных определены их расположения.

Рассмотрим узлы и детали ком­прессоров.

Видео:Как разобрать картер и коленвал компрессора У 43102.Скачать

Как разобрать картер и коленвал компрессора У 43102.

Картер (блок-картер). Он представляет собой неподвижную деталь, обыч­но коробчатого сечения. В нем расположен кривошипно-шатунный механизм, закреплены ци­линдры и вспомогательные узлы компрессора. Эти узлы восприни­мают силы, возникающие при сжа­тии паров хладагента и передают их на фундамент компрессора, который кроме того воспринимает крутящий момент и силы инерции движу­щихся масс. В случае блок-картерной конструкции, когда блок цилиндров и картер составляет единую деталь, цилиндровые втулки вставляют в гнезда блока и кре­пятся там с помощью шпилек. Втулка цилиндра имеет два посадочных пояса (вверху и внизу детали) (рис. 2.3). Диаметр (DH) нижнего пояса 1, как правило, меньше диаметра (Dв) верхнего пояса 2, чтобы нижний конец втулки можно было свободно ввести через верх­нее отверстие блок-картера.

Для осмотра деталей и выпол­нения ремонтных работ в картере предусмотрены боковые проемы 4, закрываемые крышками. Передний проем служит для выемки коленча­того вала.

Картеры и блок-картеры в период работы находят­ся под давлением паров хладагента. Это давление при работе компрессора, как правило, не превышает 0,35 МПа. Одна­ко при неработающем компрессоре вследствие неплотного прилегания рабочих клапанов давление в кар­тере может сравняться с давле­нием в конденсаторе и подняться до 1,0 МПа и выше. Картеры и блок-картеры отливаются из серого чугуна.

Цилиндровые втулки.При верти­кальном и V — образном расположении цилиндров в нижней части втулки сообщаются с картером компрессора, а сверху закрываются двумя крышками — наружной и внутренней. В хладоно­вых компрессорах внутренняя крыш­ка жестко закреплена между ци­линдром и наружной крышкой. В аммиачных компрессорах внутрен­няя крышка служит защитным устройством от гидравлических уда­ров.

Читайте также: Компрессор tecumseh cae2424z r404

В компрессорах блок-картерной конструкции применяют сменные втулки, отлитые из перлитного чу­гуна (см. рис. 2.3).

1 — нижний пояс цилиндровой втулки; 2 — верх­ний пояс цилиндровой втулки; 3 — водяная по­лость; 4 — боковой проем; 5—фундамент

Кривошипно-шатунный механизм.Он состоит из поршня с кольцами, поршневого пальца, шатуна и колен­чатого вала.

В не­прямоточных компрессорах, имеющих очень широкое распространение, применяются облегченные непро­ходные поршни (рис. 2.4, а).

На поверх­ности поршня (вверху и внизу) имеются канавки для уплотнительных б и маслосъемных в колец. Поршни отливают из чугуна или из алюминиевых сплавов.

Уплотнительные кольца служат для уплотнения между поршнем и стенками цилиндра (рис. 2.4, б), а маслосъемные кольца — для уда­ления избытка масла со стенок цилиндра. Маслосъемное кольцо (рис. 2.4, в ) на наружной поверх­ности имеет скос, образующий ко­нусную поверхность. Кольцо уста­навливают на поршень конусом вверх.

При движении поршня вверх между кольцом и стенкой цилиндра создается масляный клин, отжи­мающий кольцо в канавку пор­шня. Благодаря этому масло пропуска­ется вниз. Чтобы не было препятствия для сжатия коль­ца, в канавке поршня сверлят от­верстия для сообщения ее с внутрен­ней частью поршня, а маслосъемные кольца делают с вырезами. При движении поршня вниз масло снимается, часть масла собирается в канавке под кольцом и через отверстия в поршне стекает внутрь поршня, а затем в картер.

Что такое картер в компрессоре

Рис. 2.4. Поршень и поршневые кольца.

а — поршень непрямоточного компрессора; б — уплотнительное кольцо; в — маслосъемное кольцо.

Большинство вертикальных ком­прессоров имеют 2—3 уплотнительных кольца и 1- 2 маслосъемных кольца.

Поршневые кольца изготовляют, как правило, из чугуна. Они яв­ляются одной из ответственных де­талей поршневого компрессора. Пропуски паров хладагента через поршневые кольца снижают эффективность ра­боты компрессора. Надетое на пор­шень кольцо должно утопать в ка­навке, а замки колец следует сме­щать один относительно другого примерно на 90°. Это обеспечивает лучшую их работу. Замки колец в рабочем состоянии должны иметь зазоры во избежание заклинива­ния колец и задира зеркала цилин­дра.

Видео:Гаражный компрессор.Вентиляция картера.Скачать

Гаражный компрессор.Вентиляция картера.

Для лучшего уплотнения и умень­шения износа цилиндра поршневые кольца часто изготавливают с неме­таллической вставкой. Они могут изготавливаться из термостойких полимерных материалов, в которые для придания необходимой упругости внутрь вводятся стальные эспандеры.

Шатун (рис. 2.5) передает уси­лие от коленчатого вала к поршню и служит основным звеном преобра­зования вращательного движения коленчатого вала в возвратно-посту­пательное движение поршня. В верх­нюю головку шатуна 2 вставляется бронзовая втулка, которая является подшипником поршневого пальца 1. Стержень шатуна 3 в большинстве случаев изготовляется из стали дву­таврового сечения. Нижняя разъем­ная головка шатуна 5 служит для соединения с коленчатым валом. В нижнюю головку вставляют вкла­дыши 6, залитые антифрикционным сплавом. Крепление нижней головки шатуна в кривошипных шейках ко­ленчатого вала производится ша­тунными болтами 4.

Что такое картер в компрессоре

Рис. 2.5. Шатун Рис. 2.6. Коленчатый вал

Коленчатый вал (рис. 2.6) уста­навливается коренными шейками 1, 4 на коренные подшипники, располо­женные в блок-картере. Коренные шейки щеками 3 соединены с шатун­ными шейками 2. Для уравновеши­вания сил инерции к щекам колен­чатых валов крепятся противовесы. К коленчатому валу снаружи на хвостовик 5 закрепляют маховик, который одновременно играет роль полумуфты или шкива для клиноременной передачи для соединения с приводным электродвигателем. На шатун­ных шейках валов крепят ша­туны.

В зависимости от конструкции компрессора на одной шатунной шей­ке могут быть закреплены один или несколько шатунов. Валы изготов­ляют ковкой или штамповкой из уг­леродистых сталей с последующей механической и термической обра­боткой, с принудительной смазочной системой у коренных и шатунных подшипников. По оси валов и в щеках делают каналы, по которым мас­ло от насоса подается к подшип­никам.

Уплотнение вала. Картер ком­прессора находится под давлением хладагента, поэтому коленчатый вал в месте выхода из картера уплот­няется с помощью сальника с уплотнительными коль­цами трения. Большое распространение для уплотнения вала компрессора полу­чили пружинные сальники с коль­цами трения и масляным затвором. Если диаметр вала не превышает 50 мм, то сальник выполняют с од­ной центральной пружиной, при большем диаметре вала обычно устанавливают несколько пружин, заключенных в сепараторе (рис. 2.7).

Подвижные кольца 2 сальника стальные, уплотняются по валу ре­зиновыми кольцами 6, стойкими к хладону, аммиаку и маслу. Эти­ми же кольцами достигается уплот­нение по поверхности вала. В не­подвижные кольца 1 впрессованы графитовые вставки. Подвижные кольца 2 с помощью пружин 10 прижимаются к неподвижным графитовым кольцам. Эти трущиеся пары колец и образуют уплотнительную поверхность. Для смазки трущихся по­верхностей и для создания масля­ного гидравлического затвора в про­странство между наружной крыш­кой 3 и промежуточной крышкой 11 подается масло от насоса. Из саль­ника масло отводится по сверле­нию а в валу. Манжета 5 служит для улавливания контрольной утеч­ки масла из сальника и предотвра­щает разбрызгивание масла по валу и маховику.

Что такое картер в компрессоре

Рис. 2.7. Уплотнение коленчатого вала:

1— неподвижные кольца с графитовыми уплотнительными вставками; 2— подвижные уплот­нительные кольца; 3 — наружная крышка; 4 — крышка манжеты; 5—манжета; 6—упругие кольца для уплотнения вала; 7 — трубка для контроля утечки масла из сальника; 8 — пробка для слива; 9 — сепаратор; 10—пружина; 11 — промежуточная крышка.

Клапаны компрессора.В ком­прессорах применяют самодействую­щие клапаны. Они должны легко открываться и оказывать незна­чительное сопротивление при про­ходе паров хладагента, своевремен­но и плотно закрываться. Откры­ваются клапаны под давлением паров хладагента. Нагнетательный клапан, преодолевая усилие пру­жины клапана, начинает открывать­ся, когда давление в цилиндре бу­дет выше, чем в нагнетательной полости. Сходные явления проис­ходят и во всасывающем клапане. Он открывается, когда давление в цилиндре будет ниже, чем во всасывающей полости компрессора. В современных компрессорах применяются коль­цевые пластинчатые клапаны.

Основ­ными частями кольцевого нагнета­тельного клапана (см. рис. 2.8) являются седло 1, ограничитель подъема 2 (розетка), пружина 8 и пластинка 3. Пружина 8 (рис. 2.8, б, в) прижимает пластин­ку 3 к седлу 6 и этим перекрывает проходное сечение клапана. Розет­ки 2, 7 ограничивают подъем пла­стин и обеспечивают направление их при подъеме и опускании. Отвер­стия для выхода пара расположены в розетке по окружности между пластинами. Кроме того, в розетке имеются небольшие отверстия, рас­положенные против пластин, кото­рые препятствуют «прилипанию» пластин к ограничителям подъема.

Пластины кольцевых клапанов изготовляют толщиной 1,5—2 мм из специальной хромированной ста­ли. Высота подъема пластины кла­пана обычно 1—2 мм

Что такое картер в компрессоре

Рис. 2.8. Пластинчатые клапаны.

а) –нагнетательный клапан; б) – головка цилиндра компрессора; 1 – седло; 2 – розетка (ограничитель подъема); 3 – кольцевая пластина; 4 – пружина; 5 – корончатая гайка; 6 – шплинт; 7 – шпилька; 8 – буферная пружина.

Видео:Сколько заливать масла в воздушный компрессор?Скачать

Сколько заливать масла в воздушный компрессор?

Наряду с кольцевыми пластин­чатыми клапанами используются также ленточные самопружинящие клапаны (рис. 2.9).

Что такое картер в компрессоре

а — общий вид нагнетательного клапана; б — разрез нагнетательного клапана; в — всасывающий клапан; 1 — седло; 2 — розетка; 3 — пластина; 4 — винт крепления; 5 — направляющая.

Седло 1 и направляю­щая клапана 5 имеют расположен­ные рядом отверстия для прохода пара. В некоторых случаях отверстия заменяют на продольные пазы. Ленточная пластина перекрывает отверстия для прохода пара. Под действием разности давлений пара лента выгибается в сторону направ­ляющей и создает продольные щели для прохода хладагента. Ленточ­ные пластины изготовляют из леги­рованной стали. Большое проход­ное сечение и простота конструк­ции являются достоинствами лен­точных клапанов.

Читайте также: Компрессор для stinol 110

Предохранительный клапан ком­прессора. Он служит для защиты компрессора от разрушения при чрезмерном повышении давления со стороны нагнетания. На рис. 2.10 показан наперстковый предохрани­тельный клапан, в котором уплот­нение производится с помощью ре­зинового кольца, стойкого при взаимодействии с маслом и холо­дильным агентом.

В некоторых компрессорах вместо пружинного предохранительного клапана уста­навливают ломающуюся чугунную пластину, которая при превышении разности давления ломается. Как видно из рис. 2.10, регулировку открытия предохранительного кла­пана производят, изменяя силу пру­жины. Отрегулированный клапан пломбируют, а дату регулировки записывают в формуляр компрес­сора.

Что такое картер в компрессоре

Рис. 2.10. Предохранительный клапан ком­прессора:

1 — седло; 2 — корпус; 3 — уплотнительное рези­новое кольцо; 4 — винт крепления кольца; 5—регулирующая пробка; 6—пружина; 7 — плом­ба; 8 — полость нагнетания; 9 —клапан; 10 —стопорный винт; 11 — полость всасывания

Смазочная система компрессора. Смазка может быть принудитель­ная (под давлением насоса) и раз­брызгиванием. Первую осуществ­ляют от шестеренного или плун­жерного насоса. Наиболее надежен насос, установленный ниже уровня масла в картере. Привод насоса осуществляют от коленчатого вала непосредствен­но с помощью зубчатой передачи или эксцентрика.

На всасывающей линии насоса устанавливают сетчатый фильтр гру­бой очистки (сетку располагают на высоте 10—15 мм от дна картера; число ячеек сетки фильтра 150—300 на 1 см 2 ). На нагнетательной ли­нии насоса в средних и крупных компрессорах устанавливают щеле­вые пластинчатые или сетчатые фильтры тонкой очистки. Щелевой фильтр снабжен пружинным предо­хранительным клапаном. При за­грязнении фильтра, приводящем к резкому повышению давления мас­ла, клапан открывается и перепускает масло в картер компрес­сора. Давление масла регулируется специальным перепускным клапа­ном, сбрасывающим масло из на­гнетательного трубопровода в кар­тер. Обычно давление масла под­держивается на 0,06—0,2 МПа вы­ше, чем в картере. Если давление масла будет слишком велико, то увеличится унос масла из компрес­сора. При использовании коренных подшипников скольжения все масло, по­даваемое насосом, обычно подводится к ним, которое затем по масляным каналам коленчатого вала поступает к подшипникам ша­тунов и к сальнику. При использовании подшипников качения, масло подводится к сальнику, из которого по сверлениям вала поступает к другим деталям ком­прессора. Зеркало цилиндров в небольших бескрейцкопфных компрессорах смазы­вается маслом, стекающим из под­шипников коленчатого вала мето­дом разбрызгивания.

2.2.2. Конструкция непрямоточного одноступенчатого сальникового компрессора.

Конструкции транспортных и судовых компрессоров холодильных установок мало отли­чаются от конструкций холодильных компрессоров общего приме­нения. Некоторые отличия обусловлены спецификой охлаждения, ограниченной площадью и объемом машинных отделений, наличи­ем дополнительных внешних сил (удары, вибрация, качка). На судах крен (до 45 е ) и дифферент (до 15°) судов учитывают при конструирова­нии масляной ванны картера компрессора. Судовые компрессоры рекомендуется устанавливать с расположением оси вала параллель­но диаметральной плоскости судна для уменьшения влияния гиро­скопического эффекта на коренные подшипники и защиты приемных масля­ных фильтров от оголения при бортовой качке. Иногда фильтры устанавливают в центре нижней части специально углуб­ленных масляных ванн.

Рассмотрим конструкцию непрямоточного одноступенчатого сальникового холодильного компрессора (рис. 2.11 и 2.12).

Что такое картер в компрессоре

Рис.2.11. Поперечный разрез сальникового непрямоточного поршневого компрессора

Рис.2.12. Продольный разрез сальникового непрямоточного поршневого компрессора

Корпус компрессо­ра состоит из блок-картера 1 с двумя боковыми 6 и передней 10 крышками и проставок 16 с верхними крышками 17. Все корпус­ные детали отлиты из чугуна СЧ18-36. Число проставок определя­ется числом пар цилиндров в компрессоре. Проставки крепятся к блок-картеру болтами 18. Разъемы между блок-картером и проставками уплотнены прокладками из паронита. В проставках меж­ду верхними крышками и блок-картером образована нагнетатель­ная полость компрессора. Сам блок-картер перегородкой 15 разде­лен на всасывающую полость и картер. В верхней части блок-кар­тера и в перегородке выполнены посадочные отверстия для уста­новки цилиндровых втулок 2. В перегородке предусмотрены урав­нительные отверстия 5 с разделительными втулочками, позволяющие через внутреннее отверстие отсасывать пары хладагента из картера, а через внешнее кольцевое возвращать масло, отделяющееся от хладагента во всасывающей полости.

Видео:МОТОРНОЕ масло в картер?! НЕЛЬЗЯ но МОЖНО! Ревизия компрессораСкачать

МОТОРНОЕ масло в картер?! НЕЛЬЗЯ но МОЖНО! Ревизия компрессора

Цилиндровые втулки чугунные, на наружной поверхности имеют два посадочных пояска. Посадка втулок в блок-картер скользящая.

Коленчатый вал 12 стальной (сталь 45), штампованный, двух­коленный, двухопорный. Колена выполнены под углом 180°. На каждой шатунной шейке расположено четыре шатуна 4 (в других компрессорах может быть расположено три или два шату­на в зависимости от числа цилиндров в компрессоре). Противовесы 11 отштампованы за одно целое с валом. На коренные шейки на­прессованы роликовые сферические подшипники 13 и 23. Вал с под­шипниками установлен в стаканах 14 и 22, размещенных в расточ­ках в передней и задней стенках блок-картера. Передний подшип­ник 13 зафиксирован, задний 23 может перемещаться в стакане 22, что необходимо для компенсации линейного расширения вала при изменении температуры.

Шатуны 4 стальные штампованные. В верхнюю головку запрес­сована втулка, выполненная из бронзы ОФ10-1. Нижняя головка шатуна имеет косой разъем, что облегчает сборку. В ней установ­лены тонкостенные биметаллические вкладыши. Рабочая поверх­ность вкладышей покрыта слоем антифрикционного алюминиевого сплава АСМ.

Поршни 3 литые из алюминиевого сплава АЛ-10. При сборке с шатуном поршневой палец 21 запрессовывают в поршень и фик­сируют от продольных перемещений двумя кольцами Зегера. Верхняя часть поршня имеет специальную форму, повторяющую очертание корпуса всасывающего клапана 19, что уменьшает вред­ное пространство цилиндра. В верхней части поршня расположены уплотнительные кольца 20, в нижней —маслосъемное кольцо. Пор­шневые кольца изготовлены из термостабилизированного капрона. Необходимая упругость колец достигается установкой в канавке между кольцом и телом поршня стальных экспандеров. Кольца из капрона обладают высокой износостойкостью, их применение уве­личивает срок службы цилиндровых втулок.

Смазка компрессора осуществляется при помощи шестеренного масляного насоса 9, установленного в расточке передней стенки блок-картера. В картере поддерживают уровень масла выше сет­чатого фильтра грубой очистки 8, расположенного на дне картера. Масляный насос засасывает масло из картера через этот фильтр и нагнетает его через фильтр тонкой очистки в камеру сальника 24. В крышку сальника встроен регулирующий перепускной кла­пан 7, поддерживающий давление масла в камере сальника на 200—250 кПа выше давления паров хладагента в картере компрес­сора. Необходимость контроля за смазкой компрессора по этой раз­ности давлений вызвана тем, что давление в картере переменное и зависит от режима работы компрессора. Через сверленые каналы в коленчатом валу масло из камеры сальника поступает к шатунным подшипникам. Коренные подшипники, поршневые пальцы и цилиндры смазываются маслом, которое разбрызгивается через зазоры между нижними головками шатунов. Во избежание вспенива­ния масла в картере в период пуска компрессора предусмотрен электроподогрев масла в картере, позволяющий перед пуском компрессора выпа­рить хладагент, растворенный в масле. нагнета­тельных

В компрессорах, работающих на хладагентах R-22 и R-717 при низких тем­пературах кипения, предусмотрено водяное охлаждение полостей. Охлаждающая вода циркулирует через водяные рубашки в проставках. Для компрессоров, работающих в режимах высоких температур кипения, т. е. с относительно небольшими сте­пенями сжатия, водяное охлаждение не требуется, так как темпе­ратуры нагнетания в этих машинах не превышают 100—120° С.

Клапанная группа компрессора (рис. 2.13). Верхний торец буртика цилиндровой втулки 1 служит седлом коль­цевого всасывающего клапана 3. Через отверстия 2, просверленные в буртике цилиндровой втулки, проходит всасываемый пар хладагента.

Читайте также: Гольф плюс предохранитель компрессора

Корпус всасывающего клапана 4, установленный на бурти­ке цилиндровой втулки, служит седлом нагнетательных клапанов 12. Кольцевые пластины всасывающего 3 и нагнетательных 12 кла­панов подпружинены. Специальный фланец 5прижимает с помощью четырех гаек на шпильках 6, ввернутых в блок-картер 13, кор­пус всасывающего клапана к цилиндровой втулке. Этот фланец выполняет также роль направляющей для розетки 7 нагнетатель­ных клапанов, прижатой к корпусу всасывающего клапана буфер­ной пружиной 8. Буферная пружина, направляющие втулки 9 и 11, винт 10 и розетка 7 нагнетательных клапанов образуют ложную крышку.

Что такое картер в компрессоре

Рис. 2.13. Клапанная группа компрессора.

Такое устройство предохраняет механизм движения ком­прессора от больших перегрузок и гидравлических ударов при по­падании жидкого хладагента в цилиндр. Под давлением несжимае­мой жидкости розетка нагнетательных клапанов поднимается, сжи­мая буферную пружину, и жидкость перепускается в нагнетатель­ную полость через каналы в нажимном фланце.

Для обеспечения длительной эксплуатации компрессора необходимо соблюдение трех условий:

1) качественное уплотнение в соеди­нениях: корпус всасывающего клапана — буртик цилиндровой втулки; цилиндровая втулка — блок-картер; 2) строгое соблюдение величины линейного мертвого пространства (зазор между дни­щем поршня и корпусом всасыва­ющего клапана должен быть 0,8— 1,2 мм); 3) правильная регулировка высоты подъема пластин клапа­нов.

Сальник компрессора (рис. 2.14.) пружин­ный, торцового типа, двусторон­ний, маслозаполненный. Двусто­роннее уплотнение позволяет удерживать масло в камере сальни­ка. Торцовое уплотнение в сальнике достигается за счет трения между стальными кольцами 1, вращающимися вместе с валом, и неподвижными кольцами 2, выполненными из антифрикционного металлизированного графита. Предварительно сжатыми пружина­ми 6, расположенными в обойме 3, стальные кольца через нажим­ные кольца 4 и упругие кольца 5 прижаты к неподвижным кольцам. Упру­гие кольца из хладономаслостойкой резины или фторопласта ком­пенсируют неточности сборки сальника, обеспечивая плотное приле­гание трущихся колец, и являются хорошим уплотнением по валу.

Что такое картер в компрессоре

Рис. 2.14. Сальник компрессора.

Видео:про компрессор, какое лучше масло заливать и при каких условиях, вязкость какая? и какое лучше?!Скачать

про компрессор, какое лучше масло заливать и при каких условиях, вязкость какая? и какое лучше?!

2.2.3. Конструкция бессальникового компрессора.

Рассмотрим бессальниковый компрессор, показанный на рис. 2. 15.

Рис .2.15. Средний поршневой непрямоточныйодносту­пенчатый бессальниковый холодильный компрессор.

По конструкции основные узлы и детали современных средних компрессоров мало отличаются от используемых в круп­ных компрессорах. Средние бессальниковые непрямо­точные компрессора выполняется с чугунными или алюминиевыми корпусами, минимальным количеством разъемов, с числом цилинд­ров четыре, шесть или восемь. Двухопорные коленчатые валы (рис.2.15) уста­навливают на подшипниках качения или скольжения, при этом, как правило, один подшипник расположен на концевой шейке вала, а другой —между кривошипно-шатунным механизмом и электродвигателем. Двухопорная схема вала 11 и блок-картер 1 компрессора обеспечивают равномерность зазора между ротором 3 и статором 4 встроенного электродвигателя. Ротор располагают консольно для облегчения его монтажа и демонтажа. Уровень масла в картере должен быть не менее чем на 5 мм ниже зазора между ротором и статором, так как наличие масла в зазоре приводит к росту подво­димой мощности и увеличивает унос масла из компрессора. Масло забирается из картера масляным насосом б через фильтр 5 и по­дается через фильтр тонкой очистки в камеру 7, откуда поступает в сверление вала. По конструкции цилиндровые втулки 2, шатунно-поршневая группа 10 и детали клапанного устройства 8 и 9 аналогичны рассмотренным выше.

Интенсивное охлаждение встроенного электродвигателя всасы­ваемым паром хладагента, поступающим в компрессор через фильтр 12, позволяет увеличивать нагрузку двигателя в 1,5—1,8 раза по сравнению с его номинальной мощностью. В связи с этим бессальниковые компрессоры могут иметь встроенные двигатели значительно меньшей номинальной мощности и массы, чем откры­тые. Однако пусковой момент у встроенных электродвигателей должен быть повышенным (в зависимости от числа цилиндров и на­личия устройств, разгружающих запуск, он обычно превышает но­минальный в 1,5—2 раза). Для обеспечения нормальной работы в режимах с уменьшенной массой всасываемого пара (при температуре кипения ниже ми­нус 30° С и степени сжатия больше 10) изоляция обмотки электродвигателя должна длительно выдерживать температуру до 125° С с учетом свойств среды, в которой работает двигатель.

Для поддержания заданных температурных режимов в охлаж­даемых объектах в условиях переменной температуры окружающей среды необходимо изменять холодопроизводительность компрессора. В средних и крупных компрессорах в качестве устройств, изменяющих холодопроизводительность, получили распространение различные отжимные устройства пластин всасывающих клапанов. Принудительный от­жим пластин всасывающих клапанов от седел может осуществ­ляться с помощью специальных механических толкателей с гидрав­лическим или пневматическим приводами (в первом используется давление масла, во втором — давление паров хладагента), а так­же с помощью электромагнитных устройств. Устройства для отжи­ма пластин всасывающих клапанов могут быть встроены практи­чески во все поршневые холодильные компрессоры, кроме прямо­точных.

В качестве электромагнитных устройств ис­пользуются электромагнитные катушки, которые встраиваются ли­бо в корпус всасывающего клапана (внутренние катушки), либо в крышку цилиндра (внешние катушки). При подаче тока в элект­ромагнитную катушку образуется магнитное поле, действующее на пластину всасывающего клапана. За счет магнитных силовых линий, проходящих через пластину, она удерживается в верхнем положении, сообщая цилиндр с полостью всасывания, цилиндр отключается (переводится в режим холостого хода). При этом в отключенном цилиндре энергия теряется только на трение поршневых колец и на гидравлические сопротивления движению пара в открытом всасывающем клапане. После выключения тока магнит­ное поле исчезает, пластина всасывающего клапана более не удерживается в верхнем положении и цилиндр вновь включается в работу.

Подобное устройство показано на рис. 2.16.

Что такое картер в компрессоре

Рис. 2.16. Электромагнитное устройство отжима пластины всасывающего клапана.

В этой конструкции электромагнитная катушка 10 размещается на внешней стороне крышки цилиндра и не подвергается действию хладагента. Магнитное поле подводится к пластине всасывающего клапана 1 через крышку цилиндра (внешний магнитопровод) и де­тали клапанного устройства: седло 2 и корпус 4 всасывающего клапана, седло 6, кольцо 5 и розетку 7 нагнетательного клапана, пружины 3, 8 и 9 (центральный магнитопровод). Введение в кон­струкцию двух диамагнитных проставок 12 обеспечивает нужное направление силовых линий магнитного поля. Постоянный магнит 11 создает начальный магнитный поток, на который накладывается магнитный поток электромагнитной катушки.

Системы автоматического изменения холодопроизводительности с электромагнитным отжимом пластин всасывающих клапанов компрессора обладают следующими преимуществами: просты по устройству, имеют небольшую стоимость, отличаются малой инер­ционностью и высоким быстродействием, отсутствие толкателей и других подвижных деталей в отжимном устройстве повышает дол­говечность пластин клапанов и всего устройства в целом. Такие системы наиболее эффективны и экономичны (подводимая к ком­прессору мощность изменяется почти пропорционально изменению холодопроизводительности).

Защиту электродвигателей бессальниковых компрессоров обес­печивают встраиванием в лобовую часть обмотки статора датчиков температуры (в каждую фазу), отключающих двигатель при превы­шении допустимой температуры обмотки.

Защиту от прекращения подачи смазки в ком­прессорах, оснащенных шестеренными масляными насосами, осу­ществляют с помощью дифференциальных реле давления (реле контроля смазки РКС), останавливающих компрессор при падении разности давления масла и всасывания ниже предельно допустимой.

Для защиты средних и крупных поршневых холодильных ком­прессоров от гидравлических ударов (при попадании жидкого хлад­агента в цилиндр) используются ложные крышки, а в малых ком­прессорах устанавливают вторую, более жесткую пружину, прижимающую ограничитель подъема нагнетательного клапана к клапанной доске.

Дата добавления: 2016-06-29 ; просмотров: 13469 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала

    Видео:Теперь Компрессор качает лучше чем новый.Скачать

    Теперь Компрессор качает лучше чем новый.


    📽️ Видео

    Поршневой компрессорСкачать

    Поршневой компрессор

    КИДАЕТ МАСЛО ИЗ САПУНА?! - ТОГДА ВАМ СЮДА!! Толковая модернизация сапуна компрессора.Скачать

    КИДАЕТ МАСЛО ИЗ САПУНА?! - ТОГДА ВАМ СЮДА!! Толковая модернизация сапуна компрессора.

    Обслуживание компрессора, замена масла и чистка фильтров.Скачать

    Обслуживание компрессора, замена масла и чистка фильтров.

    Обслуживание компрессора, замена масла и фильтра. Компрессор плохо качает. Поиск причины и ТО.Скачать

    Обслуживание компрессора, замена масла и фильтра. Компрессор плохо качает. Поиск причины и ТО.

    Не качает цилиндр компрессора что делать?Скачать

    Не качает цилиндр компрессора что делать?

    Можно ли заливать моторное масло в компрессор?Скачать

    Можно ли заливать моторное масло в компрессор?

    Основная Поломка и Особенности Ремонта Китайского КомпрессораСкачать

    Основная Поломка и Особенности Ремонта Китайского Компрессора

    Сапун компрессора кидает масло . Решение проблемыСкачать

    Сапун компрессора кидает масло . Решение проблемы

    Компрессор от холодильника, как залить масло и для чего.Скачать

    Компрессор от холодильника, как залить масло и для чего.

    Компрессорное масло | Какое масло подходит для воздушных компрессоров?Скачать

    Компрессорное масло | Какое масло подходит для воздушных компрессоров?

    Травит воздух из автоматики, в чём может быть причина \ Травит воздух из компрессораСкачать

    Травит воздух из автоматики, в чём может быть причина \\ Травит воздух из компрессора

    Монтаж смотрового окна на картер мотор компрессора (часть 1).Скачать

    Монтаж смотрового окна на картер мотор компрессора (часть 1).

    Как выбрать компрессор для гаража или строительства?Скачать

    Как выбрать компрессор для гаража или строительства?

    Структура поршневого холодильного компрессора BitzerСкачать

    Структура поршневого холодильного компрессора Bitzer
Поделиться или сохранить к себе:
Технарь знаток