Что такое кавитация компрессора

Испарение жидкости с поверхности наблюдается при любой температуре. Интенсивность его зависит от температуры и давления. Если испарение происходит в ограниченное пространство, то плотность паров над жидкостью увеличивается. В этом случае увеличивается вероятность столкновения отдельных частиц пара между собой и с массой жидкости.

Таким образом, одновременно с развитием процесса испарения развивается обратный ему процесс конденсации. В определенный момент устанавливается состояние равновесия, наступает максимально возможное при даннойтемпературе насыщение пространства над жидкостью паром. Давление, соответствующее такому равновесию, называется упругостью насыщенных паров при данной температуре, или давлением паров жидкости при данной температуре. Если резко уменьшить давление над поверхностью жидкости, то возникает интенсивное испарение с поверхности и даже во всей массе, т. е. жидкость начинает кипеть. Этому способствует наличие в жидкости некоторого количества растворенных газов, частицы которых являются центрами возникновения пузырьков.

Такое вскипание с образованием большого количества пузырьков, каверн-пустот в жидкости называют паровой кавитацией. В общем случае явление кавитации представляет собой образование разрывов сплошности в жидкости. Известно, что жидкости, не содержащие каких-либо примесей, способны выдерживать, не разрываясь, довольно высокие растягивающие усилия, иногда достигающие величин 314 МПа. Температурные флуктуации, приводящие к образованию паровых зародышей, понижают прочность воды до 157 МПа.

Экспериментально доказано, что при соблюдении особых предосторожностей можно добиться того, чтобы вода выдерживала растягивающие напряжения в 27 МПа. Вместе с тем, на практике в обычных лабораторных и натурных условиях кавитация наступает уже при давлениях, близких к давлению насыщенных паров при данной температуре. Такое расхождение теоретических и опытных данных обусловлено тем, что естественная вода содержит ядра или зародыши кавитации в виде мельчайших твердых или газообразных частичек — включений. Это вредное явление, с которым приходится встречаться при работе насосов, турбин и других гидромашин. Борьба с кавитацией является важнейшей технической проблемой.

Видео:КавитацияСкачать

Кавитация

Кавитация в центробежных насосах

Что такое кавитация компрессора

Кавитация в центробежных насосах — это гидродинамическое явление, которое зависит от гидродинамических качеств рабочих органов машины и физических свойств жидкости. Кавитация в насосоах обычно начинается при падении давления до значения, равного или меньшего давления упругости насыщенного пара и сопровождается нарушением сплошности потока с образованием полостей, насыщенных паром и растворенными в жидкости газами.

Содержание статьи

Она возникает также при снижении местного давления по разным причинам динамического характера: увеличение скорости жидкости из-за увеличения частоты вращения, отрыва или сжатия потока, отклонения линий тока от их нормальных траекторий.

Кавитация в насосах может возникнуть как на движущихся, так и на неподвижных элементах проточной части.

Видео:Видео кавитации в насосе.Скачать

Видео кавитации в насосе.

Причины возникновения кавитации.

Явление кавитации в насосах происходит следующим образом — зарождение кавитации во многих случаях начинается с образования отдельных микроскопических пузырьков на участках пограничного слоя обтекаемого тела. После достижения определенного размера эти пузырьки поступают в зону видимой кавитации.

Полости или так называемые, каверны постоянного и устойчивого типов образуются без предварительного роста пузырьков в тех случаях, когда давление окружающей среды довольно низкое или соответственно высокая скорость потока.

Что такое кавитация компрессора

Явление кавитации в насосах сопровождается вскипанием жидкости и является термодинамическим процессом, определяемым свойствами жидкости: давлением, температурой, скрытой теплотой парообразования, теплоемкостью.

При вскипании жидкости в местах с минимумом давления образуются полости, заполненные паром и частично выделившимися из раствора газами. Возникшие пузырьки пара увлекаются потоком и попадают в область с более высоким давлением, где они вновь конденсируются. Так как кипение связано с затратой тепла на парообразование, которое должно быть получено из окружающей среды путем теплообмена, то процесс вскипания происходит с некоторым запаздыванием, т.е. минимальное давление в потоке достигает значения несколько меньшего давления парообразования и вскипание жидкости происходит из перегретого состояния. Конденсация пузырьков пара в области повышенного давления происходит также с некоторым запаздыванием в условиях относительного переохлаждения. В связи с отмеченными процессами вскипание и конденсация происходят с достаточно большой скоростью.

Читайте также: Привод компрессора двигатель 245

Частицы жидкости, заполняющие полость конденсирующегося пузырька, движутся к центру со значительными скоростями. В момент завершения конденсации частицы жидкости внезапно останавливаются, и происходит местный гидравлический удар. При этом кинетическая энергия частиц переходит в энергию упругой деформации. Так как деформация жидкости весьма незначительна, то давление повышается на довольно большую величину. Следом за повышением давления возникает обратная волна давления, сопровождающаяся резким падением его и, возможно, повторным вскипанием, а затем снова конденсацией.

Различают три стадии кавитации: начальную, развитую и суперкавитацию. При начальной стадии кавитационная область отсутствует. Развитая стадия отличается наличием значительных кавитационных каверн на обтекаемом теле. В условиях суперкавитации весь обтекаемый элемент находится в зоне кавитационной каверны.

Последствия кавитации в насосах

Последствия кавитации в насосах сопровождается признаками, отрицательно сказывающимися на работе насоса.

Шум и вибрация возникают при разрушении кавитационных пузырьков в зоне повышенного давления. Уровень шума зависит от размеров насоса. Кавитационный шум проявляется в виде характерного потрескивания в зоне выхода в рабочее колесо.

Снижение параметров насоса при наличии развитой кавитации по-разному сказывается для насосов с разными коэффициентами быстроходности и зависит от значения и влияния кавитационной зоны. При низкой быстроходности параметры снижаются резко. Для насосов с высоким коэффициентом быстроходности характерно постепенное снижение параметров. Если кавитационная зона занимает все сечение канала, то происходит срыв(прекращение) подачи насоса.

Кавитационное разрушение материалов (питтинг) происходит при длительной работе насоса в условиях кавитации в местах захлопывания пузырьков. Питтинг имеет место как при начальной, так и при развитой кавитации.

Что такое кавитация компрессора

Эксплуатация насосов с подачей большей расчетной также иногда приводит к кавитационным повреждениям элементов рабочих колес и корпусных делатей. Считается, что кавитационное разрушение материала происходит из-за механического воздействия кавитирующего потока на материал.

Следует различать разрушение, вызванное кавитацией, коррозией и эрозией. Коррозия является следствием химического и электролитического воздействия сред на металл, а эрозия происходит в результате отрыва частиц металла твердыми телами, транспортируемыми перекачиваемой жидкостью(например, песком).

Наличие материалов, стойких против кавитационных разрушений, неизвестно. Все материалы быстрее или медленнее разрушаются. Более стойкими являются материалы, которые наряду с механической прочностью обладают химической стойкостью, как, например, бронза. Сильно подвержены кавитационному разрушению чугун и углеродистая сталь. Наиболее кавитационно устойчивой считается нержавеющая сталь. Применение кавитационно стойких материалов может обеспечить непродолжительную работу насоса без заметного разрушения в условиях частичной кавитации. Такая возможность представляет значительные преимущества, например в условиях кратковременной перегрузки насоса.

Влияние кавитации на характеристики насоса

Что такое кавитация компрессора

Кавитация в центробежных насосах сопровождается нарушением неразрывности потока в насосе и отражается на его нормальных характеристиках. Последствяи кавитации в насосах оказывают непосредственное влияние на характеристики насоса. Начальная стадия кавитации, ограниченная небольшой областью (местная кавитация), не сказывается заметно на подаче и напоре насоса и проявляется характерным потрескиванием в области всасывания, обусловленным гидравлическими ударами. Местная кавитация в насосах может сопровождаться разрушением материала колеса или корпуса насоса. Кавитация более развитая приводит к уменьшению подачи, напора и КПД насоса, а затем и к полному срыву его работы. На этом рисунке показано влияние кавитации на характеристики насоса, пунктиром отмечен нормальный ход характеристик без кавитации.

Читайте также: Компрессор 250 кгс см2

Кавитация является одним из основных факторов нарушающих нормальную работу насоса. К другим факторам влияющим на выдаваемую насосом характеристику относят гидравлическое сопротивление.

Видео по теме

Кавитация в насосах является фактором, сильнейшим образом влияющим на надежность работы насоса. Длительная работа насоса в области даже незначительных кавитационных явлений совершенно недопустима в силу разрушающего действия кавитации.

Видео:Кавитация в центробежных насосах. Рабочая характеристика. Опасные зоны работы насоса.Скачать

Кавитация в центробежных насосах. Рабочая характеристика. Опасные зоны работы насоса.

Кавитация насоса и пути ее устранения

Физически это явление объясняется тем, что в жидкости всегда присутствует какое-то количество растворенного газа.

Физически это явление объясняется тем, что в жидкости всегда присутствует какое-то количество растворенного газа.

При движении жидкости в ней могут возникать зоны разрежения. В результате выделяются пузыри.

Попадая с потоком в зону более высоких давлений, пузыри схлопываются, выделяя энергию, которая разрушает поверхность рабочих колес насоса, улиток и т.д.

Эта энергия также создает ударные волны, вызывающие вибрацию, распространяющуюся на рабочее колесо насоса, вал, уплотнения, подшипники, повышая их износ.

Возникновение кавитации в насосе обусловлено разными причинами ( Любой вид кавитации связан с неучетом важных правил гидравлики и гидродинамики).

Кавитация — это главный источник проблем с насосами.

Каждый насос характеризуется величиной кавитационного запаса ∆hтр, обозначаемой западными насосными фирмами NPSHR. Это то минимальное давление, в пределах которого у жидкости, попадающей в насос, сохраняется состояние собственно жидкости. Величину ∆hтр в номинале и кривую зависимости ∆hтр от подачи/напора обязан предоставлять производитель насоса.

Насос в станцию необходимо подбирать, устанавливать и обвязывать так, чтобы он располагал в зоне своей работы (определяется наложением характеристик насосов и системы водоводов) тем допустимым кавитационным запасом ∆hдоп (или NPSHA), величина которого была бы выше ∆hтр (NPSHA > NPSHR).

Иными словами ∆hдоп – есть потенциальная энергия жидкости у всасывающего отверстия насоса ∆hдоп = Ha + Hs – Hvp -Hf -Hi, где Ha – атмосферное давление (10 м водного столба на уровне моря); Hs – статический напор (положительный или отрицательный), определяемый как разность уровней между свободной поверхностью жидкости и осью насоса, м; Hvp – давление паров перекачиваемой жидкости, зависящее от температуры, м; Hf – потери на трение во всасывающей линии, м; Hi – потери в пространстве между горловиной и головкой рабочего колеса насоса (если неизвестны, можно принять равными 0,6 м).

Пример. Нужно определить геометрическую высоту всасывания Но для насоса с ∆hтр = 7,0 м.

Расчетом из таблиц получаем потери: на входе в насос Hi = 0,6 м; на трение во всасывающей линии Hf = 0,3 м; на задвижке Нv = 0,1 м; на конфузоре Нк = 0,1 м; давление насыщенных паров Hvp = 0,2 м. Величина Но равна Hs со знаком минус.

Для получения искомой Но применим систему из трех уравнений.

∆hдоп = 1,1 ∆hтр, где 1,1 – коэффициент запаса, принимаемый в зависимости от условий работы насоса 1,1 – 1,5 .

Но = – Hs,(4.2) так как уровень воды отрицательный по отношению к оси насоса.

∆hдоп = Ha + Hs – Hvp – Нк – Нv – Hf -Hi (4.3)

Отсюда Но = -(1,1 ∆hтр – Ha + Hvp + Нк + Нv + Hf +Hi ) или

Но = -(1,1 * 7,0 – 10 + 0,2 +0,1 + 0,1 + 0,3 + 0,6) = -(-1,0) = 1 м.

Читайте также: Не включается компрессор холодильника ока 6м

Требуемый кавитационный запас ΔhTP обычно вычисляют по характеристике, представляемой производителем насоса. Кривая ΔhTP начинается с точки нулевой подачи и медленно растет с увеличением. Когда подача превышает точку наибольшего КПД насоса кривая ΔhTP резко возрастает, по экспоненте. Зона справа от точки максимального КПД обычно является кавитационно опасной. Кавитационный запас не поддается контролю с точки зрения механики, и оператор насосной станции (особенно если он не ознакомлен с характеристиками насосов ) улавливает по металлическому шуму и щелчкам уже развитую кавитацию. К сожалению, на рынке слишком мало приборов, позволяющих наблюдать и предотвращать кавитацию. Хотя датчик давления всасывающей стороне насоса, подающий сигнал тревоги при падении давления ниже допустимого для конкретного агрегата, мог бы и должен бы применяться повсеместно.

Многие операторы знают, что звук пропадает после прикрытия задвижки. Но, снижая тем самым подачу и кавитацию, можно не достичь технологических параметров производственного процесса или водоснабжения / водоотведения. Для того, чтобы правильно устранить кавитацию нужно использовать принцип – на входе в насос должно всегда быть жидкости больше, чем на выходе. Вот несколько простых способов как этого достичь:

— замените диаметр всасывающего патрубка на больший;

— переместите насос ближе к питающему резервуару, но не ближе 5-10 диаметров всасывающей трубы;

— понизьте сопротивление во всасывающей трубе, заменой ее материала на менее шероховатый, задвижки на шиберную, характеризующуюся меньшими местными потерями, удалением обратного клапана;

— если всасывающая труба имеет повороты, уменьшите их количество и (или) замените отводы малых на большие радиусы поворота, сориентировав их в одной плоскости (иногда правильно заменить жесткую трубу гибкой);

— увеличьте давление на всасывающей стороне насоса повышением уровня в питающем резервуаре либо снижением оси установки насоса, либо использованием бустерного насоса.

Изложенные способы просты и понятны любому специалисту, но далеко не всегда этим руководствуются.

Простой пример. Рассматрим проект, выполненный авторитетной проектной организацией. Насосы с подачей 1400 м3/ч оборудованы задвижками диаметрами 400 мм с напорной и 300 мм со всасывающей стороны . Это неверно. Всасывающий патрубок должен быть больше напорного!

Оказалось, что патрубки имеют одинаковые диаметры по 300мм. Чем руководствуется насосная фирма догадаться не трудно. С подходящим под данную подачу всасывающим патрубком Ø400 или Ø500 возросли бы размер улитки и цена. Но, если бы проектировщик подсчитал получаемые скорости на входе в насос 5,5 м/с, а за насосом 3,1 м/с, то смог бы убедить заказчика отказаться от насоса, способного кавитировать, хотя и менее дорогого.

В насосной станции смонтированы агрегаты сухой горизонтальной установки выше уровня воды в приемном резервуаре на 2,8м.

Их номинальные параметры: Q=3500 м3/ч, Н=26м, ∆hтр(NPSHR)=7.7м. Насосы кавитируют. Реально они работают в точке Q=3900 м3/ч, Н=24м, где ∆hтр(NPSHR)=8,6м. Диапазон производительности насосной станции 6 000-10 000 м3/ч.

С помощью формулы этого параграфа подсчитываем ∆hдоп(NPSHA)=5.8м. Отсюда ∆hдоп 1,1∆hтр=6,6м

Энергетические затраты по вариантам показывают явное преимущество в использовании бустерных насосов, а денежная разность их (2081 272 руб) сравнима с закупочной ценой за агрегат.

Кроме того установка редукционного клапана не исключит проблем:

Наличие воздуха во всасывающем трубопроводе, следовательно, неустойчивой работы насосов;

Уменьшения ресурса работы подшипниковых узлов и уплотнений (при подаче 2000 м3/чач насос работает на границе ограничения по Qmin, с повышенными осевыми и радиальными силами)

Таким образом, можно оценить целесообразность и эффективность мероприятий по устранению кавитации.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📺 Видео

    Как работает центробежный насос. Что такое кавитацияСкачать

    Как работает центробежный насос. Что такое кавитация

    Кавитация.Скачать

    Кавитация.

    Что такое КАВИТАЦИЯ. Её ПРИЧИНЫ и УСТРАНЕНИЕ КАВИТАЦИИСкачать

    Что такое КАВИТАЦИЯ. Её ПРИЧИНЫ и УСТРАНЕНИЕ КАВИТАЦИИ

    Как работает торцевое уплотнение? / Центробежный насосСкачать

    Как работает торцевое уплотнение? / Центробежный насос

    257) Явление кавитации (материаловедение)Скачать

    257) Явление кавитации (материаловедение)

    Кавитация в насосеСкачать

    Кавитация в насосе

    кавитацияСкачать

    кавитация

    КавитацияСкачать

    Кавитация

    Кавитация в трубопроводе (модель) Cavitation in the pipeline (model)Скачать

    Кавитация в трубопроводе (модель) Cavitation in the pipeline (model)

    Кавитация в насосе отопленияСкачать

    Кавитация в насосе отопления

    Как работает кавитация? 😋Скачать

    Как работает кавитация? 😋

    КАВИТАЦИЯ – ЧТО ЭТО ТАКОЕ? / БЕЗОПАСНОСТЬ КАВИТАЦИИ / СОВЕТЫ ВРАЧАСкачать

    КАВИТАЦИЯ – ЧТО ЭТО ТАКОЕ? / БЕЗОПАСНОСТЬ КАВИТАЦИИ / СОВЕТЫ ВРАЧА

    Центробежный компрессорСкачать

    Центробежный компрессор

    КавитацияСкачать

    Кавитация

    КавитацияСкачать

    Кавитация

    Описание процесса кавитации от ErhardСкачать

    Описание процесса кавитации от Erhard

    Работа насоса в КАВИТАЦИОННОМ РЕЖИМЕСкачать

    Работа насоса в КАВИТАЦИОННОМ РЕЖИМЕ
Поделиться или сохранить к себе:
Технарь знаток