Компрессоры ГТУ предназначены для сжатия и подачи воздуха в камеры сгорания. Сжатый воздух компрессора используется также для охлаждения отдельных деталей газовой турбины.
К компрессорам судовых ГТУ предъявляют следующие основные требования: 1) повышение давления воздуха при возможно большем коэффициенте полезного действия; 2) непрерывная подача воздуха в камеру сгорания; 3) малая чувствительность к изменениям режима работы; 4) минимальный вес и габарит; 5) простота и надежность в работе.
Компрессоры бывают осевые, центробежные и винтовые. Наиболее распространенными являются осевые многоступенчатые компрессоры, обладающие большой производительностью, высоким к. п. д. и большой степенью сжатия (6—7).
Осевой многоступенчатый компрессор (рис. 109) состоит из ряда последовательно расположенных направляющих лопаток 6 , закрепленных в корпусе 7 , и рабочих лопаток 5 , расположенных на барабанном роторе 11. По мере сжатия объем воздуха уменьшается и, следовательно, уменьшаются высоты лопаток.
Вращаясь, рабочие лопатки ротора сообщают газу кинетическую энергию. При движении по расширяющимся каналам рабочих лопаток относительная скорость воздуха падает, происходит уменьшение кинетическои энергии потока с соответствующим повышением давления в нем. Изменение относительной скорости потока в канале рабочих лопаток связано с расходом энергии, подводимой к компрессору. В расширяющихся каналах направляющих лопаток наблюдается дальнейшее повышение давления воздуха и уменьшение скорости его движения. В проточную часть компрессора воздух поступает через входной патрубок 1 и направляющий аппарат 4, откуда, пройдя каналы рабочих лопаток 5 и направляющих лопаток 6, попадает в спрямляющий аппарат 8. Направляющий аппарат обеспечивает необходимое направление воздушному потоку перед входом в первую ступень, а спрямляющий аппарат обеспечивает осевой выход в диффузор 9 и далее в выходной патрубок 10. В диффузоре происходит дальнейшее сжатие воздуха за счет уменьшения скорости его движения.
Ротор компрессора установлен на подшипниках 3 . В местах выхода вала через корпус расположены концевые уплотнения 2. Роторы осевых компрессоров выполняются барабанного, дискового и смешанного типов.
Лопаточный аппарат осевых компрессоров изготовляют с высокой точностью и высокой степенью чистоты обработки, что способствует получению высокого к. п. д. компрессора. В рабочих
Лопатках осевых компрессоров бандаж отсутствует, лопатки крепят хвостовиками различной формы.
Центробежные компрессоры . На рис. 110 показана принципиальная схема одноступенчатого центробежного компрессора. На валу 6 насажено рабочее колесо, состоящее из диска 5 и рабочих лопаток 3 . Рабочее колесо помещено в неподвижный корпус 7 . Атмосферный воздух через входной патрубок 2 поступает в каналы а рабочего колеса. При вращении рабочего колеса воздух, находящийся в каналах а , под действием центробежной силы движется к диффузору 4. Так как площадь проходного сечения диффузора увеличивается в направлении выхода, то значительная часть кинетической энергии, приобретенной воздухом в каналах рабочего колеса, преобразуется в потенциальную энергию в диффузоре. В диффузоре давление воздуха продолжает увеличиваться, а скорость падает. Из диффузора сжатый воздух попадает в выходные патрубки 1 , в которых скорость воздушного потока несколько падает, а давление повышается.
Судовые газотурбинные центробежные компрессоры бывают одноступенчатые и двухступенчатые.
Степень сжатия в одноступенчатом центробежном компрессоре невелика и составляет 1,2—1,8. Степенью сжатия называется отношение конечного давления воздуха в одной ступени к его начальному давлению.
Благодаря малым размерам центробежные компрессоры применяют во вспомогательных газотурбинных установках. Центробежные компрессоры просты по устройству, но имеют меньшую экономичность и призводительность, чем осевые компрессоры.
Видео:ГАЗОВАЯ ТУРБИНА || ⏱ Что это? Зачем это?Скачать
Устройство газовой турбины и компрессора ГТУ
Видео:Как работает центробежный газовый компрессорСкачать
Устройство газовой турбины и компрессора газотурбинной установки
Рис. Простейшая турбина
Газовая турбина представляет собой тепловой двигатель, в котором потенциальная энергия газа преобразуется в механическую энергию.
Продольный разрез простейшей газовой турбины показан на рисунке. На вал насажен диск 2, в котором укреплены рабочие лопатки 4. Вал с диском и лопатками в сборе называют ротором. Ротор турбины расположен внутри корпуса 5 и опирается на подшипники скольжения 6. Газ поступает к ротору турбины через сопла, образованные сопловыми лопатками 3. Сопла предназначены для преобразования потенциальной энергии газа в кинетическую. Внутри сопла давление газа уменьшается, а его скорость увеличивается. Перегородки, разделяющие сопла, называют сопловыми лопатками, а все сопловые лопатки, расположенные на одной окружности, — сопловой решеткой.
После сопловой решетки газ поступает к рабочим лопаткам. Промежутки между рабочими лопатками называют рабочими каналами, а все рабочие лопатки на диске — рабочей решеткой. Сопловую решетку и расположенную за ней по ходу газа рабочую решетку называют степенью. Рабочие лопатки изготовлены так, что каналы между ними имеют определенную форму. За счет изменения количества движения газа в рабочих каналах часть его энергии преобразуется в механическую, заставляя вращаться ротор. Ротор соединяется с потребителем механической энергии, которым на электрических станциях является электрический генератор, а на газоперекачивающих — нагнетатель газа.
Читайте также: Компрессор сб4 амортизационная группа
Поступает газ в турбину через входной патрубок 9, а уходит из нее отработавший газ через выхлопной патрубок 8. Корпус турбины состоит из входного и выхлопного патрубков и той части, где расположены сопловые и рабочие лопатки. Таким образом корпус отделяет газ повышенного давления от окружающей среды. Однако в местах выхода ротора из корпуса имеются зазоры, и чтобы предотвратить утечку газа, в корпусе устанавливают уплотнения 7. Корпус турбины внутри или снаружи обязательно покрывают теплоизоляцией.
Компрессор служит для сжатия газа (воздуха) и повышения его энергии и температуры. При малых степенях сжатия в ГТУ в основном используют осевые компрессоры.
Простейший одноступенчатый компрессор состоит из тех же элементов, что и простейшая турбина. Так же как и турбина, компрессор имеет ротор состоящий из вала 1, диска 2 и рабочих лопаток 4. На внутренней поверхности корпуса компрессора располагаются направляющие лопатки 3. Решетку направляющих лопаток и следующую за ней рабочую решетку называют ступенью компрессора.
Воздух засасывается в компрессор через входной патрубок 9. Каналы между направляющими и рабочими лопатками имеют такую форму, что скорость воздуха в них уменьшается, а давление растет. Чтобы производилась работа сжатия воздуха, от турбины отбирается значительная часть мощности, необходимой для вращения ротора компрессора.
Выхлопной патрубок 8 (диффузор) служит для вывода воздуха из компрессора. Давление воздуха за диффузором значительно выше, чем во входном патрубке, и является наибольшим давлением в ГТУ.
Корпус компрессора состоит из входного патрубка, цилиндрической части, в которой расположены направляющие лопатки, и диффузора. Так же как в турбине, в местах выхода ротора из корпуса компрессора располагаются уплотнения 7. Турбины и компрессоры, имеющие одну ступень, называют одноступенчатыми. Турбины и компрессоры большой мощности с одной ступенью сконструировать обычно не удается. В этом случае на роторе приходится располагать несколько ступеней одну за другой. Такие турбины и компрессоры называют многоступенчатыми.
Видео:Центробежный компрессорСкачать
Теория газотурбинных двигателей
Книга может оказаться полезной при изучении принципа работы, конструкции и эксплуатации газотурбинных авиационных двигателей.
Оглавление
Приведённый ознакомительный фрагмент книги Теория газотурбинных двигателей предоставлен нашим книжным партнёром — компанией ЛитРес.
Теория ступени компрессора ГТД
Компрессор газотурбинного двигателя служит для повышения давления воздуха перед подачей его в камеру сгорания.
Применение компрессора в ГТД позволяет получить нужный расход воздуха, обеспечить желаемое значение КПД, получить высокую тягу (мощность) при небольших габаритных размерах и массе двигателя.
Компрессор ГТД должен удовлетворять следующим требованиям:
а) сжатие воздуха должно происходить при возможно большем КПД;
б) обеспечивается устойчивая работа двигателя во всем диапазоне эксплуатационных режимов;
в) подвод воздуха в камеру сгорания производится без пульсаций давления, расхода и скорости потока;
г) обеспечение наименьшего веса и габаритов двигателя;
д) обеспечивается высокую надежность авиадвигателя.
Основными типами компрессоров авиационных ГТД являются многоступенчатые осевые [1] или осецентробежные компрессоры.
Процесс сжатия воздуха в многоступенчатом компрессоре ГТД состоит из ряда последовательно протекающих процессов сжатия воздуха в отдельных его ступенях.
В современных газотурбинных двигателях наиболее часто используются осевые компрессоры, как наиболее полно отвечающие предъявляемым требованиям. В осевых компрессорах авиадвигателя по сравнению с другими типами компрессоров возможны высокие значения степени повышения давления воздуха и большие расходы воздуха при высоких КПД и сравнительно малых габаритных размерах и массе.
Осевой компрессор ГТД имеет несколько рядов лопаток, насаженных на один общий вращающийся барабан или на ряд соединенных между собой дисков, которые образуют ротор компрессора.
Один ряд лопаток ротора называется рабочим колесом.
Другой основной частью компрессора является статор, состоящий из нескольких рядов лопаток (направляющих аппаратов), закрепленных в корпусе. Назначением лопаток статора является:
а) направление проходящего через них воздушного потока под необходимым углом на рабочие лопатки расположенного за ними рабочего колеса;
б) спрямление потока, закрученного лопатками впереди находящегося рабочего колеса, с одновременным преобразованием части кинетической энергии закрученного потока в работу по повышению давления воздуха.
Читайте также: Чем отличается холодильник с одним компрессором
Сочетание одного рабочего колеса и одного стоящего за ним направляющего аппарата называется ступенью компрессора.
Перед первым рабочим колесом компрессора может быть установлен входной направляющий аппарат.
При вращении рабочего колеса за счет внешней энергии повышается скорость потока, при этом на входе рабочего колеса создается разрежение, обеспечивающее непрерывное поступление воздуха. Внешняя энергия, сообщенная лопатками рабочего колеса воздуху, движущемуся по расширяющимся (диффузорным) каналам, затрачивается на повышение давления воздуха, а также на увеличение его скорости.
Преобразование кинетической энергии воздушного потока, приобретенной в рабочем колесе, сопровождающееся повышением давления воздуха, происходит в направляющем аппарате, который, кроме того, обеспечивает потоку требуемое направление для входа в рабочее колесо следующей ступени компрессора.
Разрез лопаток ступени компрессора цилиндрической поверхностью образует решетку профилей рабочего колеса.
На входе в рабочее колесо скорость воздуха может быть направлена не параллельно оси колеса, а под некоторым углом к ней вследствие неполного спрямления потока направляющим аппаратом предыдущей ступени компрессора или установки перед рабочим колесом входного направляющего аппарата. Вращению рабочего колеса соответствует перемещение решетки с окружной скоростью «u». Для определения скорости воздуха относительно рабочих лопаток «w» применим правило сложения векторов скоростей, согласно которому абсолютная скорость равна относительной и переносной. Переносной скоростью будет окружная скорость лопаток, следовательно, c = w + u.
Треугольник, составленный из векторов «c», «u» и «w», является треугольником скоростей на входе в рабочее колесо.
Лопатки рабочего колеса должны быть установлены таким образом, чтобы передние кромки их были направлены по направлению вектора «w» или под небольшим углом к нему. Кривизна профилей лопаток выбирается с таким расчетом, чтобы угол выхода потока из колеса был больше угла входа потока.
Направление потока за решеткой при безотрывном ее обтекании определяется в углом установки задней кромки лопатки.
Разворот потока воздуха в рабочем колесе компрессора приводит к возникновению на каждой лопатке аэродинамической силы «P» направленной от вогнутой к выпуклой поверхности профиля. Можно разложить силу «P» на две составляющие. Составляющую, направленную параллельно вектору окружной скорости, назовем окружной, а составляющую, направленную параллельно оси компрессора — осевой составляющей. Окружная составляющая направлена против движения лопаток колеса и противодействует их вращению. Для поддержания частоты вращения ротора к валу компрессора должен быть приложен крутящий момент. Работа, затрачиваемая на вращение колеса идет на увеличение энергии потока, прошедшего через колесо. Это проявляется в том, что обычно скорость потока за колесом оказывается больше скорости потока перед колесом, несмотря на одновременное увеличение давления.
Абсолютная скорость «с» на выходе из рабочего колеса определится построением треугольника скоростей. Вследствие поворота потока в колесе вектор абсолютной скорости на выходе из рабочего колеса оказывается отклоненным от вектора абсолютной скорости на входе в сторону вращения колеса.
Лопатки направляющего аппарата отклоняют поток в обратную сторону. Форма лопаток подбирается так, чтобы направление вектора абсолютной скорости за ступенью соответствовало направлению вектора абсолютной скорости на входе в рабочее колесо. При этом, увеличивается поперечное сечение струи, проходящей через канал между соседними лопатками. В результате скорость потока в направляющем аппарате падает, а давление увеличивается.
Независимо от скорости набегающего на лопатки воздуха и формы проточной части, течение потока через ступень может рассматриваться как течение через систему диффузорных каналов с уменьшением относительной скорости потока в рабочем колесе, уменьшением абсолютной скорости потока в направляющем аппарате и увеличением давления в обоих случаях.
Основными элементами центробежной компрессорной ступени являются рабочее колесо и диффузор, а характерными сечениями воздушного тракта — сечение перед рабочим колесом, сечение за рабочим колесом и сечение на выходе из диффузора. За диффузором могут быть установлены выходной канал или выходные патрубки, обеспечивающие поворот выходящего из диффузора потока в нужную сторону.
Рабочее колесо центробежного компрессора обычно представляет собой диск, на торцевой поверхности которого расположены рабочие лопатки.
В центробежной ступени можно получить значительно большее повышение давления воздуха, чем в осевой ступени, благодаря центробежным силам направленным по движению воздушного потока в рабочем колесе. Но в то же время (в отличие от осевой ступени) ее диаметр намного превышает диаметр рабочего колеса осевого компрессора.
Читайте также: Для чего нужен маслоотделитель в компрессоре
Недостатки центробежной ступени могут быть в значительной степени смягчены в диагональной ступени. По своим параметрам она занимает промежуточное положение между осевой и центробежной ступенью компрессора. Сжатие воздуха в ее рабочем колесе происходит как вследствие уменьшения относительной скорости воздуха в межлопаточных каналах, так и в результате работы центробежных сил, совершаемой при перемещении воздушного потока в колесе от центра к периферии. Меньшее отклонение основного направления течения воздуха от осевого позволяет уменьшить диаметральные габаритные размеры ступени.
Степенью повышения давления ступени компрессора называется отношение давления за ступенью к давлению на входе в рабочее колесо.
В осевых ступенях степень повышения давления обычно невелика и равняется 1,2…1,35. В центробежных ступенях степень повышения давления может достигать 4—6 и более.
С целью увеличения общей степени повышения давления применяют многоступенчатые компрессоры, в каждой ступени которых осуществляется повышение давления воздуха.
Адиабатический КПД ступени компрессора представляет собой отношение адиабатической работы повышения давления воздуха в ступени к затраченной работе Адиабатический КПД ступени осевого компрессора обычно равен 0,83—0,87, что свидетельствует об их высоком аэродинамическом совершенстве. Центробежные ступени имеют несколько меньшее значение адиабатического КПД — 0,75—0,80.
Расход воздуха через компрессор пропорционален плотности воздуха, скорости потока и площади проходного сечения.
Окружная скорость воздушного потока является важнейшим конструктивным параметром ступени компрессора двигателя, она ограничивается прочностью лопаток и диска рабочего колеса и газодинамическими соображениями.
По уровню скорости набегающего на лопатки воздуха осевые ступени разделяются на дозвуковые, сверхзвуковые и трансзвуковые (околозвуковые), в которых окружная или осевая скорости изменяются по радиусу изменяются по радиусу от сверхзвуковой до дозвуковой.
В реальных ступенях компрессора между лопатками рабочего колеса и внутренней поверхностью статора всегда имеется конструктивный зазор [3]. При этом зазор на работающем двигателе отличается от монтажного зазора вследствие деформаций деталей ротора и статора под действием газовых сил и теплового расширения. Обычно у прогретого двигателя рабочие зазоры оказываются меньше монтажных.
Перетекание (утечка) воздуха через радиальные зазоры приводит к понижению давления на вогнутой стороне лопатки и к повышению давления на спинке, т. е. к уменьшению разности давлений на поверхностях профиля. Уменьшение перепада давлений приводит к снижению окружного усилия и, следовательно, к снижению работы, передаваемой воздуху в ступени.
На работу ступени оказывают влияние и осевые зазоры между ее неподвижными и вращающимися венцами. Осевые зазоры между лопатками рабочего колеса и направляющего аппарата составляют примерно 15—20% хорды лопаток и также снижают эффективность работы ступени.
Основные параметры многоступенчатого компрессора
В теории газотурбинных двигателей обычно используются следующие параметры многоступенчатого компрессора:
а) степень повышения давления (отношение полного давления воздуха за компрессором к полному давлению перед компрессором);
б) секундный расход воздуха через компрессор;
в) частота вращения pотоpа компрессора;
г) адиабатический КПД компрессора.
Степень повышения давления в компрессоре ГТД равна произведению степеней повышения давления его отдельных ступеней.
В компрессорах современных авиадвигателей степень повышения давления компрессора доходит до 30 и более. Такие высокие степени повышения давления применяют для улучшения экономичности двигателя.
Дело в том, что в газотурбинных двигателях 70% тепла, введенного с топливом в двигатель, теряется с уходящими газами. Эти потери обусловлены вторым законом термодинамики (в двигатель засасывается холодный воздух, а выходит горячий).
При увеличении степени повышения давления в компрессоре соответственно увеличивается и степень понижения давления на тракте расширения газа в двигателе (во сколько раз воздух сжимается — во столько же раз газы расширяются). А чем больше степень понижения давления, тем ниже (при заданной температуре газа перед турбиной) температура уходящих газов и, следовательно, тем меньше потери тепла с уходящими газами.
Иначе говоря, с увеличением степени повышения давления воздуха степень полезного использования введенного в двигатель тепла увеличивается.
Ступени компрессора работают в разных условиях: они имеют разные окружные и осевые скорости, их лопатки обтекаются потоком с разными скоростями и т. д. Поэтому адиабатические работы сжатия воздуха в различных ступенях одного и того же компрессора могут существенно отличаться друг от друга.
В первых и в меньшей степени в последних ступенях работа заметно снижена по сравнению с работой приходящейся на каждую из средних ступеней.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
💥 Видео
Высокие технологии: Газовые турбины. Вращающиеся гигантыСкачать
Как работает Газовая Турбина?Скачать
Наддув ДВС. Как работает турбонаддув?Скачать
ГТУ. Турбина в работе.Скачать
Устройство и причины выхода из строя турбокомпрессораСкачать
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬСкачать
Турбина или компрессор - что лучше? В чем разница? Просто о сложномСкачать
ТУРБИНА И КОМПРЕССОР. Устройство, анимация, советы эксплуатации.Скачать
Ильдар Авто-подбор что такое Помпаж турбиныСкачать
Принцип работы газоперекачивающего агрегата ГПА-Ц-16Скачать
Турбина или Компрессор? Суперчарджер против Турбочарджера!Скачать
Турбина+Компрессор!Твинчарджер, как реализовать!Скачать
ГАЗОТУРБИННЫЕ УСТАНОВКИ | ПРИНЦИП РАБОТЫ | РАБОЧИЕ ЦИКЛЫСкачать
Газовые турбины «Сделано в России»Скачать
Рабочий процесс в осевой ступени турбиныСкачать
Газовые турбины "Силовых машин"Скачать
Турбины. Часть 1. Принципы работы компрессора, турбины, геометрии.Скачать