Объем всасываемого компрессором пара (в кубических метрах) за единицу времени (час), составляет его объемную производительность. Теоретическая объемная производительность совпадает с объемом, описываемым поршнями компрессора. Действительная объемная производительность. Действительный рабочий процесс компрессора отличается от теоретического главным образом наличием в цилиндре мертвого пространства, гидравлического сопротивления клапанов, подогрева всасываемого пара от стенок цилиндра, неплотности в клапанах и поршневых кольцах, возможности конденсации пара на холодных стенках цилиндра и свойств фреона растворяться в масле при сжатии паров.
Мертвое пространство.
Мертвое пространство поршневого компрессора представляет собой объем, заключенный между клапанами и днищем поршня в момент нахождения его в верхней, мертвой точке. Основной причиной существования мертвого пространства является линейный зазор между днищем поршня и клапанной доской (не менее 0;01 диаметра цилиндра), предназначенной для компенсации удлинения поршня и шатуна при их нагревании, а также возможной неточности, допущенной при изготовлении деталей и сборке компрессора. В мертвое пространство входит также объем углублений и отверстий клапанов и объем кольцевого зазора между стенкой цилиндра и поршнем (до первого кольца).
В быстроходных компрессорах объем мертвого пространства составляет от 3 до 5% объема цилиндра. В современных малых герметичных компрессорах объем мертвого пространства снижен до 2%. Расширение паров, остающихся в мертвом пространстве цилиндра, уменьшает объем всасывания, а следовательно, и производительность компрессора. Чем больше объем мертвого пространства, тем значительнее снижение действительной производительности компрессора. Поэтому мертвое пространство называют иногда «вредным» пространством.
Гидравлическое сопротивление при всасывании и нагнетании.
Вследствие наличия гидравлического сопротивления клапанов и каналов давление в цилиндре во время заполнения нужно поддерживать несколько ниже давления в испарителе, а при нагнетании — выше давления в конденсаторе. С понижением давления всасывания удельный объем поступающего в цилиндр пара увеличивается, а его плотность и масса уменьшается. Возрастание давления нагнетания приводит к увеличению объема пара, остающегося в мертвом пространстве. Таким образом, сопротивление при всасывании и нагнетании приводит к снижению объемной производительности компрессора.
Подогрев пара при всасывании.
Поступающие в цилиндр холодные пары холодильного агента подогреваются нагревшимися в процессе сжатия стенками цилиндра, днищем поршня, поверхностями крышек и клапанов. Вследствие этого удельный объем всасываемого пара увеличивается, а его масса уменьшается, при этом объемная производительность при установившемся режиме температур снижается.
Влияние утечки пара через неплотности на производительность компрессора. При работе действительного компрессора наблюдаются утечки пара из цилиндра из-за недостаточно плотного прилегания клапанных пластин к седлу, в замках поршневых колец и в местах их прилегания к стенкам цилиндра. В процессе всасывания через неплотный нагнетательный клапан часть пара из нагнетательной полости поступает обратно в цилиндр, а при сжатии через всасывающий клапан и поршневые кольца часть пара возвращается из цилиндра во всасывающую полость или картер компрессора.
Утечки пара через неплотности снижают объемную производительность компрессора.
При нормальных условиях работы компрессора потери составляют 3—4% от объема цилиндра. При плохом прилегании клапанов и изношенных поршневых кольцах такие потери значительно возрастают.
В фреоновых компрессорах при сжатии повышается растворимость фреона в смазочном масле, а при всасывании, когда давление паров понижается, происходит выделение (возгонка) паров фреона из масла, находящегося в этот момент в цилиндре компрессора. Вследствие этого уменьшается действительный объем паров, всасываемых компрессором.
При всасывании холодных паров и особенно при работе влажным ходом стенки цилиндров значительно охлаждаются. Поэтому при сжатии пара возможна конденсация пара на холодных стенках (в районе всасывающего клапана). При обратном ходе поршня давление падает и жидкий холодильный агент, выкипая, занимает часть объема цилиндров, уменьшая действительную производительность компрессора. Подогрев всасываемого пара в теплообменнике практически исключает эти потери.
Видео:9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать
Поршневой компрессор: Теоретические основы работы поршневого компрессора
Видео:Устройство и принцип работы винтового компрессораСкачать
Объемная производительность.
Объем всасываемого поршневым компрессором пара (в кубических метрах) за единицу времени (час), составляет его объемную производительность. Теоретическая объемная производительность совпадает с объемом, описываемым поршнями компрессора.
Читайте также: Фильтры для компрессора dalgakiran
Действительная объемная производительность.
Действительный рабочий процесс поршневого компрессора отличается от теоретического главным образом наличием в цилиндре мертвого пространства, гидравлического сопротивления клапанов, подогрева всасываемого пара от стенокцилиндра, неплотности в клапанах и поршневых кольцах, возможности конденсации пара на холодных стенках цилиндра и свойств фреона растворяться в масле при сжатии паров.
Мертвое пространство.
Мертвое пространство поршневого компрессора представляет собой объем, заключенный между клапанами и днищем поршня в момент нахождения его в верхней, мертвой точке.
Основной причиной существования мертвого пространства является линейный зазор между днищем поршня и клапанной доской (не менее 0;01 диаметра цилиндра),предназначенной для компенсации удлинения поршня и шатуна при их нагревании, а также возможной неточности, допущенной при изготовлении деталей и сборке компрессора. В мертвое пространство входит также объем углублений и отверстий клапанов и объем кольцевого зазора между стенкой цилиндра и поршнем (до первого кольца).
В быстроходных компрессорах объем мертвого пространства составляет от 3 до 5% объема цилиндра. В современных малых герметичных компрессорах объем мертвого пространства снижен до 2%.
Расширение паров, остающихся в мертвом пространстве цилиндра, уменьшает объем всасывания, а следовательно, и производительность компрессора. Чем больше объем мертвого пространства, тем значительнее снижение действительной производительности компрессора. Поэтому мертвое пространство называют иногда «вредным» пространством.
Гидравлическое сопротивление при всасывании и нагнетании.
Вследствие наличия гидравлического сопротивления клапанов и каналов давление в цилиндре во время заполнения нужно поддерживать несколько ниже давления в испарителе, а при нагнетании — выше давления в конденсаторе. С понижением давления всасывания удельный объем поступающего в цилиндр пара увеличивается, а его плотность и масса уменьшается. Возрастание давления нагнетания приводит к увеличению объема пара, остающегося в мертвом пространстве. Таким образом, сопротивление при всасывании и нагнетании приводит к снижению объемной производительности компрессора.
Подогрев пара при всасывании.
Поступающие в цилиндр холодные пары холодильного агента подогреваются нагревшимися в процессе сжатия стенками цилиндра, днищем поршня, поверхностями крышек и клапанов. Вследствие этого удельный объем всасываемого пара увеличивается, а его масса уменьшается, при этом объемная производительность при установившемся режиме температур снижается.
Влияние утечки пара через неплотности на производительность компрессора. При работе действительного компрессора наблюдаются утечки пара из цилиндра из-за недостаточно плотного прилегания клапанных пластин к седлу, в замках поршневых колец и в местах их прилегания к стенкам цилиндра. В процессе всасывания через неплотный нагнетательный клапан часть пара из нагнетательной полости поступает обратно в цилиндр, а при сжатии через всасывающий клапан и поршневые кольца часть пара возвращается из цилиндра во всасывающую полость или картер компрессора.
Утечки пара через неплотности снижают объемную производительность компрессора.
При нормальных условиях работы компрессора потери составляют 3—4% от объема цилиндра. При плохом прилегании клапанов и изношенных поршневых кольцах такие потери значительно возрастают.
В фреоновых компрессорах при сжатии повышается растворимость фреона в смазочном масле, а при всасывании, когда давление паров понижается, происходит выделение (возгонка) паров фреона из масла, находящегося в этот момент в цилиндре компрессора. Вследствие этого уменьшается действительный объем паров, всасываемых компрессором.
При всасывании холодных паров и особенно при работе влажным ходом стенки цилиндров значительно охлаждаются. Поэтому при сжатии пара возможна конденсация пара на холодных стенках (в районе всасывающего клапана). При обратном ходе поршня давление падает и жидкий холодильный агент, выкипая, занимает часть объема цилиндров, уменьшая действительную производительность компрессора. Подогрев всасываемого пара в теплообменнике практически исключает эти потери.
Видео:Поршневой компрессорСкачать
Что такое вредный объем
Вредный или мертвый объем — это остаточный объем рабочей камеры, при нахождении вытеснителя, например, поршня, в крайнем положении. На вредный объем вытеснитель не не воздействует, в нем скапливается сжатый воздух, то есть от не используется в работе, поэтому его и называют мертвым.
Вредный объем формируется подводящими каналами, зазорами между корпусом и вытеснителем в крайнем положении.
Читайте также: Ресивер для компрессора переделка
Наиболее актуально понятие вредного объема для компрессорных машин и устройств для работы со сжатым воздухом. Так как при сжатии воздух накапливается во вредном объем и не поступает в линию нагнетания, то есть часть работы осуществляется впустую.
Видео:Все что нужно знать о мощности компрессора!Скачать
Вредный объем в поршневом компрессоре
Рассмотрим как формируется вредный объем при работе поршневого компрессора. Поршень установлен в гильзе и совершает возвратно-поступательное движение, для исключения ударов, между поршнем и передней крышкой есть небольшой зазор даже в крайнем положении.
Воздух поступает в полость компрессора от всасывающего клапана через канал 1 и вытесняется по каналу 2 через нагнетательный обратный клапан. При движении поршня вправо (по схеме), объем рабочей камеры увеличивается, она заполняется воздухом из атмосферы. При движении поршня влево, воздух сжимается и вытесняется через нагнетательный клапан в систему. При этом сжатый воздух будет заполнять каналы 1 и 2. Когда поршень буден находиться в крайнем положении, сжатый воздух будет находится в каналах 1, 2 и в зазоре между поршнем и крышкой, образующих вредный объем 3.
Как только поршень начнет двигаться вправо, нагнетательный клапан закроется, а воздух находившийся в каналах и в зазоре, останется в рабочей камере компрессора, получается, что он был сжат, но в систему он не поступил, в процессе увеличения объема рабочей камеры он вновь расширится, а во время уменьшения рабочего объема, он вновь будет сжиматься.
Часть воздуха, сжимается и расширяется, но при этом не поступает в систему, а значит не совершается полезной работы, поэтому объем в котором находится эта часть воздуха называют вредным.
Чтобы минимизировать вредный объем клапаны располагают близко к качающему узлу.
Видео:Как выбрать компрессор для гаража или строительства?Скачать
Большая Энциклопедия Нефти и Газа
Видео:Винтовая пара (винтовой блок) компрессора: что это и принцип работы. Компрессор ABAC SPINN 15-10.Скачать
Мертвое пространство
Мертвые пространства в цилиндрах определяются длиной шатуна и штока. Ориентировочно для однолинейной пятиступенчатой машины величины зазоров мертвого пространства составляют: III ст. — 3 мм; II ст. — 3 — ь4лш; I ст. ( а) — 5 мм; I ст. ( в) — 4 мм; IV ст. — 6 мм; V ст. — 6 — — 7 мм. [1]
Мертвое пространство , как следует из дальнейшего, уменьшает производительность компрессора. [2]
Мертвое пространство у компрессоров с крейцкопфами ( см. рис. 8 и 9) регулируют, изменяя толщину шайб. Регулировку мертвого пространства у компрессоров с крейцкопфом ( рис. 10) производят фиксацией внутренней гайки специальным стопором. [4]
Мертвое пространство определяется объемом воздуха, не участвующего в процессе газообмена. Мертвое пространство равно сумме объемов воздуха, остающегося в носовой полости, гортани, трахее, бронхах и бронхиолах при выдохе. Объем мертвого пространства у взрослого человека в среднем составляет 140 мл. Воздушная смесь, не участвующая в процессе газообмена содержит мало кислорода и в значительной степени загрязнена углекислым газом. Каждый КИП имеет мертвое пространство, объем которого суммируется с объемом мертвого пространства человека. Поэтому при конструировании, очень важно обеспечить минимальный объем мертвого пространства КИП. [5]
Мертвое пространство ( или мертвый объем) — это небольшое свободное пространство в цилиндре, в котором остается сжатый пар, когда поршень достигает крайнего положения в конце хода нагнетания. Оно предохраняет поршень от удара о клапанную доску. [6]
Мертвое пространство , связанное с таким дополнительным отверстием, можно уменьшить, заполнив его почти до самого куба ртутью. Можно также ввести загрузку в куб через колонку, что позволяет избежать дополнительного отверстия. [7]
Мертвое пространство влияет на подачу тем сильнее: чем выше степень повышения давления; поэтому относительная величина мертвого пространства выбирается тем меньшей, чем больше степень повышения давления компрессора. [8]
Мертвое пространство , как следует из дальнейшего, уменьшает производительность компрессора. В то же время наличие мертвого пространства не связано с существенными потерями энергии, так как теоретически энергий, затрачиваемая на сжатие газа в мертвом пространстве, возвращается при расширении газа в течение хода всасывания. [10]
Мертвое пространство в нем уменьшено за счет установки дополнительного нагнетательного клапана на нижнем конце плунжера. При этом ловильный шток заменяется специальным захватным приспособлением, монтируемым в нижней части плунжера. Это приспособление представляет собой замковую муфту с косыми прорезями, в клетку же всасывающего клапана ввинчивают шпиндель со шпилькой. [11]
Читайте также: Ремонт коленчатых валов компрессора
Мертвое пространство находится в клапанах и каналах, а также в небольшом зазоре между поршнем, находящимся в крайнем положении, и крышкой цилиндра. [13]
Мертвое пространство проверяется расплющиванием свинцовых проволочек, вводимых под поршень и над поршнем через окна еще неустановленных клапанов. [15]
Видео:Как работает компрессор? За что отвечает каждая ручка? Подробный урок из курса Романа СтиксаСкачать
Теоретические основы работы поршневого компрессора
Видео:ЗАЧЕМ НУЖЕН КОМПРЕССОР И НЕ ТОЛЬКОСкачать
Объемная производительность
Объем всасываемого компрессором пара (в кубических метрах) за единицу времени (час), составляет его объемную производительность. Теоретическая объемная производительность совпадает с объемом, описываемым поршнями компрессора. Действительная объемная производительность. Действительный рабочий процесс компрессора отличается от теоретического главным образом наличием в цилиндре мертвого пространства, гидравлического сопротивления клапанов, подогрева всасываемого пара от стенок цилиндра, неплотности в клапанах и поршневых кольцах, возможности конденсации пара на холодных стенках цилиндра и свойств фреона растворяться в масле при сжатии паров.
Мертвое пространство.
Мертвое пространство поршневого компрессора представляет собой объем, заключенный между клапанами и днищем поршня в момент нахождения его в верхней, мертвой точке. Основной причиной существования мертвого пространства является линейный зазор между днищем поршня и клапанной доской (не менее 0;01 диаметра цилиндра), предназначенной для компенсации удлинения поршня и шатуна при их нагревании, а также возможной неточности, допущенной при изготовлении деталей и сборке компрессора. В мертвое пространство входит также объем углублений и отверстий клапанов и объем кольцевого зазора между стенкой цилиндра и поршнем (до первого кольца).
В быстроходных компрессорах объем мертвого пространства составляет от 3 до 5% объема цилиндра. В современных малых герметичных компрессорах объем мертвого пространства снижен до 2%. Расширение паров, остающихся в мертвом пространстве цилиндра, уменьшает объем всасывания, а следовательно, и производительность компрессора. Чем больше объем мертвого пространства, тем значительнее снижение действительной производительности компрессора. Поэтому мертвое пространство называют иногда «вредным» пространством.
Гидравлическое сопротивление при всасывании и нагнетании.
Вследствие наличия гидравлического сопротивления клапанов и каналов давление в цилиндре во время заполнения нужно поддерживать несколько ниже давления в испарителе, а при нагнетании — выше давления в конденсаторе. С понижением давления всасывания удельный объем поступающего в цилиндр пара увеличивается, а его плотность и масса уменьшается. Возрастание давления нагнетания приводит к увеличению объема пара, остающегося в мертвом пространстве. Таким образом, сопротивление при всасывании и нагнетании приводит к снижению объемной производительности компрессора.
Подогрев пара при всасывании.
Поступающие в цилиндр холодные пары холодильного агента подогреваются нагревшимися в процессе сжатия стенками цилиндра, днищем поршня, поверхностями крышек и клапанов. Вследствие этого удельный объем всасываемого пара увеличивается, а его масса уменьшается, при этом объемная производительность при установившемся режиме температур снижается.
Влияние утечки пара через неплотности на производительность компрессора. При работе действительного компрессора наблюдаются утечки пара из цилиндра из-за недостаточно плотного прилегания клапанных пластин к седлу, в замках поршневых колец и в местах их прилегания к стенкам цилиндра. В процессе всасывания через неплотный нагнетательный клапан часть пара из нагнетательной полости поступает обратно в цилиндр, а при сжатии через всасывающий клапан и поршневые кольца часть пара возвращается из цилиндра во всасывающую полость или картер компрессора.
Утечки пара через неплотности снижают объемную производительность компрессора.
При нормальных условиях работы компрессора потери составляют 3—4% от объема цилиндра. При плохом прилегании клапанов и изношенных поршневых кольцах такие потери значительно возрастают.
В фреоновых компрессорах при сжатии повышается растворимость фреона в смазочном масле, а при всасывании, когда давление паров понижается, происходит выделение (возгонка) паров фреона из масла, находящегося в этот момент в цилиндре компрессора. Вследствие этого уменьшается действительный объем паров, всасываемых компрессором.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
📺 Видео
Шумоизоляция поршневого компрессора Remeza | Эксперимент | ЗамерыСкачать
Центробежный компрессорСкачать
КАК выбрать РЕСИВЕР ? Как подобрать ресивер для компрессора?Скачать
Сравнение компрессоров Fiac AB 100 515 Remeza 100 LB30 Fubag B5200Скачать
О чем МОЛЧАТ производители КОМПРЕССОРОВ как продлить срок службыСкачать
Компрессор Ремеза. Все, что нужно знать о его работе.Скачать
Холодильный компрессор | Как это устроено? | DiscoveryСкачать
Компрессор воздушный, увеличение производительности на 10-20Скачать
Рассказ о компрессореСкачать
Как настроить КОМПРЕССОР правильноСкачать
Работа винтового компрессора, его принцип действия и устройство.Скачать
Как работает спиральный компрессорСкачать