Что такое номинальная частота мотора

3.5. Номинальная частота вращения двигателя — частота вращения коленчатого вала (об/мин), при которой согласно документации изготовителя двигатель должен развивать номинальную мощность.

Содержание
  1. Смотри также родственные термины:
  2. Смотреть что такое «Номинальная частота вращения двигателя» в других словарях:
  3. Номинальная и максимальная частота оборотов
  4. Что такое номинальная частота вращения асинхронного двигателя
  5. Мощность двигателя или крутящий момент? Какая характеристика важнее?
  6. Характеристики двигателей постоянного тока
  7. Обороты двигателя: характеристики и особенности
  8. Номинальные обороты двигателя
  9. Инжекторные двигатели с плавающими оборотами
  10. Угловая скорость
  11. Угловая скорость в конкретных случаях
  12. Как запустить мотор с использованием эфира
  13. Основные показатели двигателя
  14. Что такое мощность двигателя
  15. Способы определения характеристик электромотора.
  16. Что такое крутящий момент
  17. Синхронные и асинхронные электромашины
  18. Синхронная скорость
  19. Скольжение
  20. Регулировка частоты вращения
  21. Внешняя скоростная характеристика (ВСХ)
  22. Основные характеристики электродвигателей
  23. Роль мощности и крутящего момента двигателя
  24. Корректируем обороты
  25. 🔍 Видео

Смотри также родственные термины:

3.4 номинальная частота вращения двигателя S (rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем.

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Смотреть что такое «Номинальная частота вращения двигателя» в других словарях:

номинальная частота вращения двигателя S — 3.4 номинальная частота вращения двигателя S (rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем. Источник: ГОСТ ИС … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения двигателя в минуту — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN rated engine speed … Справочник технического переводчика

номинальная частота вращения — 3.14 номинальная частота вращения: Установленная предприятием изготовителем частота вращения, при которой достигается номинальная мощность. Источник … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения коленчатого вала — номинальная частота вращения коленчатого вала: Расчетное значение частоты вращения коленчатого вала. Источник: ГОСТ 30419 96: Устройства воздухообеспечения тормозного оборудования. Компрессоры. Общие требования безопасности … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения вала — Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. [ГОСТ Р 51852 2001] Тематики установки газотурбинные EN rated speed … Справочник технического переводчика

Номинальная частота вращения коленчатого вала (ротора) двигателя — По ГОСТ 14846 Источник: ГОСТ 20306 90: Автотранспортные средства. Топливная экономичность. Методы испытаний … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения вала — 39. номинальная частота вращения вала: Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. Источник: ГОСТ Р 51852 2001: Установки газотурбинные. Термины и определения оригинал документа См … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения синхронного генератора — 3.1.5.1 номинальная частота вращения синхронного генератора (rated speed of synchronous generator rotation): Частота вращения nr, G, определяемая по формуле где fr номинальная частота, Гц; p число пар полюсов. Источник … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения асинхронного генератора — 3.1.5.2 номинальная частота вращения асинхронного генератора (rated speed of asynchronous generator rotation): Частота вращения nr,G, определяемая по формуле где sr,G расчетное значение скольжения асинхронного генератора (rated slip of… … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения генератора — 3.1.5 номинальная частота вращения генератора (rated speed of generator rotation); nr, G: Частота вращения, необходимая для генерирования напряжения номинальной частоты. Источник … Словарь-справочник терминов нормативно-технической документации

Видео:Преобразователь частоты для асинхронного электродвигателя. Что это такое, как он устроен.Скачать

Преобразователь частоты для асинхронного электродвигателя. Что это такое, как он устроен.

Номинальная и максимальная частота оборотов

Номинальная и максимальная частота оборотов

Двигатель внутреннего сгорания развивает наибольшую мощность при определенной частоте оборотов; это называется номинальной частотой оборотов. Увеличение числа оборотов двигателя больше номинального не приводит к повышению мощности. Максимально допустимая частота оборотов зависит от типа двигателя: от 4500 оборотов в минуту (дизель) до 6500 оборотов в минуту (16-клапанный двигатель). При этом речь идет о «рабочей частоте вращения», которая не опасна при долговременной работе двигателя в таком режиме. Увеличение числа оборотов выше указанных величин неблагоприятно сказывается на состоянии двигателя. Двигатель при этом начинает сильно шуметь; это происходит из-за колебаний коленчатого вала в области подшипников и вибраций клапанов. На 16-клапанном двигателе нарушается работа гидрокомпенсаторов. Если колебания слишком сильны, то могут сломаться пружины клапана или клапанные рычаги; кроме того, может быть повреждена штанга толкателя (C-двигатель) и толкатель клапана, что приведет к поломке клапана. Последнее является худшим вариантом, так как клапан при этом может попасть под движущийся поршень, что приведет к поломке двигателя. При поломанном клапанном рычаге, толкателе клапана или поломанной штанге толкателя (C-двигатель) не работает только соответствующий клапан и цилиндр. Это станет заметно по снижению мощности двигателя. Чтобы знать допустимую частоту оборотов двигателя, некоторые модификации Renault 19 на заводе оборудуются тахометром. Этот прибор имеет некоторое опережение — в верхней части шкалы до 5%. Таким образом, 6000 об/мин на тахометре на самом деле соответствуют лишь 5700 об/мин.

Видео:Как определить мощность, частоту вращения, двигателя без бирки или шильдика самому и простоСкачать

Как определить мощность, частоту вращения, двигателя без бирки или шильдика самому и просто

Что такое номинальная частота вращения асинхронного двигателя

Видео:Регулирование частоты вращения ротора трехфазных асинхронных двигателейСкачать

Регулирование частоты вращения ротора трехфазных асинхронных двигателей

Мощность двигателя или крутящий момент? Какая характеристика важнее?

Материал подготовлен автором проекта АвтобурУм. Графики можно увидеть здесь: https://autoburum.com/user/stas90/blog/609-moshhnost-dvigate.
Большинство автолюбителей судят о ходовых характеристиках авто по мощности двигателя. Обычно ее измеряют в киловаттах или лошадиных силах. Чем она больше, тем солиднее. Максимальную мощность двигатель внутреннего сгорания развивает на определенных оборотах. Обычно для бензиновых автомобилей это около 6000 оборотов в минуту, для дизельных – около 4000 об./мин. Именно поэтому дизельные движки относятся к классу низкооборотных, бензиновые – высокооборотные. Однако и среди бензиновых двигателей есть низкооборотные, и наоборот – есть дизельные высокооборотные.

Часто водитель сталкивается с ситуацией, когда необходимо придать авто значительное ускорение для выполнения очередного маневра. Жмешь педалью акселератора в пол, а автомобиль практически не ускоряется. Вот тут-то и нужен мощный крутящий момент на тех оборотах, на которых работает в данный момент двигатель. Именно он характеризует приемистость автомобиля. Поэтому каждый автовладелец должен знать, на каких оборотах его авто имеет максимальный крутящий момент перед тем, как садить красивую девушку в свою машину и показывать чудеса пилотирования.

Крутящий момент двигателя, что это?

Из курса физики за 9 класс многие помнят, что крутящий момент М равен произведению силы F, прикладываемой к рычагу длиной плеча L. Формула:

Длина в системе СИ измеряется в метрах, сила – в ньютонах. Нетрудно определить, что момент измеряется в ньютон на метр.

Основная сила в двигателе внутреннего сгорания вырабатывается в камере сгорания в момент воспламенения смеси. Она приводит в действие кривошипно-шатунный механизм коленвала. Рычагом здесь является длина кривошипа, то есть, если эта длина будет больше, то и крутящий момент тоже увеличивается. Однако, увеличивать кривошипный рычаг бесконечно нельзя. Во-первых, тогда надо увеличивать рабочий ход поршня, то есть размеры движка. Во-вторых, при этом уменьшаются обороты двигателя. Двигатели с большим рычагом кривошипного механизма применяют в крупномерных плавательных средствах. В легковых авто с небольшими размерами коленвала не поэкспериментируешь.

В технических характеристиках, указанных на модель двигателя, параметр максимального крутящего момента указывается совместно с величиной оборотов (либо пределами величин оборотов), при которых такой крутящий момент может быть достигнут. Обычно считается: если максимальный крутящий момент может быть достигнут на оборотах до 4500 об./мин., то двигатель низкооборотный, более 4500 – высокооборотный.

От величины крутящего момента напрямую зависит характеристика мощности двигателя автомобиля. Почему считается, что бензиновые движки заведомо могут обеспечить большую, чем дизельные, мощность. Дело в том, что в силу конструктивных особенностей и управляемости системы зажигания бензиновые двигатели могут длительное время работать на оборотах 8000 об./мин и более. Дизельные движки достигают максимального крутящего момента на более низких оборотах. В городском ритме движения, когда нет необходимости развивать предельные обороты, дизельные авто нисколько не уступают бензиновым, наоборот, на малых и средних оборотах спокойно можно двигаться в ритме от 30 до 60 км/час, не переключая третью либо 4-ю передачу.

Пересчитать крутящий момент в мощность двигателя и наоборот можно, руководствуясь упрощенной физической формулой:

По этой формуле получится мощность Р в киловаттах. Вводить надо М – крутящий момент двигателя в ньютон на метр, n– величина оборотов двигателя. Здесь 9549 — число, которое получается после упрощения основной формулы в результате перемножения констант (ускорения свободного падения, числа Пи и т.п.).

Для перевода киловатт в лошадиные силы следует результат умножить на 1,36. В некоторых случаях в технических характеристиках указывается крутящий момент на холостых оборотах.

Зависимости мощности двигателя и крутящего момента от количества оборотов

Типовые характеристики зависимости мощности и крутящего момента от оборотов двигателя приведены на рис.1

Из графика видно, что крутящий момент стабильно увеличивается до 3000 оборотов, затем наступает относительно пологий участок. На оборотах около 4500 об/мин достигается максимум крутящего момента около 178 ньютон*метр. В то же время мощность двигателя продолжает расти до достижения оборотов около 5500 об/мин, и на этих оборотах достигает около 124 лошадиных сил. Это понятно, если обратиться к формуле, в которой видно, что мощность пропорциональна произведению крутящего момента на величину оборотов. После 5500 оборотов в минуту уменьшение крутящего момента превышает крутизну увеличения оборотов, и мощность начинает уменьшаться.

Как это объяснить физически, то есть, без формул. На малых оборотах в область сгорания поступает небольшое количество воздушно-топливной смеси в единицу времени, соответственно, крутящий момент и мощность небольшие. Увеличивая обороты, количество смеси (а вслед за ним и мощность, крутящий момент) возрастает. Достигая больших значений, мощность уменьшается по следующим причинам:

механические потери на трение механизмов;

Видео:Асинхронные и Синхронные двигатели и генераторы. Мощный #энерголикбез ПЕРСПЕКТИВЫ ЭЛЕКТРОДВИГАТЕЛЕЙСкачать

Асинхронные и Синхронные двигатели и генераторы. Мощный #энерголикбез ПЕРСПЕКТИВЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

Характеристики двигателей постоянного тока

Классификация и основные уравнения двигателей постоянного тока

Двигатели постоянного тока находят широкое применение в тех случаях, когда по условиям работы исполнительного механизма требуется широкое изменение частоты вращения, и при этом часто имеют преимущества по сравнению с двигателями переменного тока. Используются они в металлургической промышленности, стан­костроении, системах автоматического регулирования, широко применяются на электрическом транспорте, в авиации и автомо­билестроении. Двигатели постоянного тока могут иметь мощность в пределах от нескольких ватт до нескольких тысяч киловатт.

Читайте также: Анод для лодочного мотора сузуки 140

Как и генераторы, двигатели постоянного тока классифициру­ют по способу включения обмотки возбуждения. Различают дви­гатели независимого, параллельного, последовательного и сме­шанного возбуждения. Электрические схемы этих двигателей ана­логичны схемам соответствующих генераторов. Отличие заключается в том, что ток якоря

в двигателях незави­симого и последовательного возбуждения равен сетевому току
I
, а в двигателях параллельного и смешанного возбуждения из сети потребляется и ток возбуждения
I
в.

Рассмотрим основные уравнения двигателей постоянного тока.

1. Уравнение равновесия напряжений для цепи якоря в режиме двигателя:

Упрощение уравнения производится так же, как для ге­нераторов:

2. Уравнение баланса токов для двигателей параллельного и смешанного возбуждения:

— момент инерции якоря двигателя и вращающихся частей приводного механизма;
М—
электромагнитный момент, развива­емый двигателем,
Мс
— момент сопротивления, равный сумме моментов приводимого механизма
М2
и тормозного мо­мента
Mo,
обусловленного потерями внутри самого двигателя.

Уравнение частоты вращения двигателя можно получить если в(24.2) подставить вместо ЭДС его значение

Разрешив полученное уравнение относительно n

Характеристики двигателей постоянного тока

Основными характеристиками, по которым оценивают рабо­чие свойства двигателей, являются:

— зависимость частоты вращения от тока якоря,

— зависимость электромагнитного момента от тока якоря,

зависимость частоты вращения от электромаг­нитного момента,
п =f(M).
Двигатели независимого и параллельного возбуждения.Все ха­рактеристики этих двигателей получают при постоянных значе­ниях напряжения сети и тока возбуждения, обычно соответству­ющих своим номинальным значениям: U= U ном; IB = I

Видео:Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбезСкачать

Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбез

Обороты двигателя: характеристики и особенности

Начинающие и профессиональные автовладельцы интересуются вопросом, на каких оборотах (высоких или низких) лучше ездить. Этот актуальный вопрос чаще всего провоцирует вызов ожесточенной полемики среди автолюбителей, которые предпочитают высказать свою точку зрения.

Данная статья позволит ознакомиться с основными оборотами двигателей и в устранении проблем, возникших в ходе нестабильности оборота. Поэтому предлагаем внимательно прислушаться к советам профессионалов, которые подскажут, какие обороты двигателя допустимы для вождения современного автомобиля.

Самой распространенной проблемой современных агрегатов считается нестабильночть оборотов холостого хода. Следовательно, отсутствие холостых ходов, может, вызывать серьезные хлопоты на дорогах. Управлять подобным авто становится практически невозможным. Чтобы избежать аварийных ситуаций, автовладелец обязан мочь учесть несколько важных правил.

В процессе движения автомобиль, всегда определяется частота вращения вала колес и двигателя. Когда увеличивается частота вращения вала двигателя, соответственно, увеличивается и скорость движения авто. Поэтому частота движения вала определяется делением передаточного числа текущей передачи.

Также, не стоит забывать, что на некоторых автомобилях установлен ограничитель оборотов двигателя, который снижает количество оборотов коленвала в зависимости от разных условий.

При запуске системы холостого хода происходит мощностный режим. В подобном случае необходимо огромное внимание уделяется инжекторному и карбюраторному мотору. Автомобильный карбюратор более раннего выпуска обладает зависимым холостым ходом. Благодаря новейшей разработанной конструкции, во время вождения авто, у водителей не должно возникать лишних хлопот.

Но так как стоимость на нефть увеличилась, мировые производители транспортных средств, выпустили автономный экономичный холостой ход, который уменьшает расходы топлива. В основном число оборотов не должно превышать 60.

По мнению специалистов, после внедрения карбюратора автономного холостого хода, обслуживание данного устройства заметно усложнилось. Так как система питания нуждается в вождении фильтров, которые предназначены для очищения горючего. Стоит отметить, что отсутствие фильтров положительно сказывается на стабильности функционировании двигателя. Поэтому обороты (по асфальту) нужно держать между 2000 до 3000.

Ранее, на карбюраторах устанавливали холостой ход с помощью специального винта, приоткрытый дроссельной заслонкой. Но на данном этапе, процесс установки значительно усложнился. Отдельная система с наличием собственных каналов и жиклеров, отвечают за процесс подачи воздуха и дозировки горючего. После установления системы холодного хода, намного снизилась надежность.

При попадании хотя бы одного волоса или соринки, могут возникнуть перебои. Работоспособность двигателя ухудшиться и возникнут серьезные проблемы. Если вовремя не обратить внимания, то можно полностью заглушить работу двигателя. Новейшие карбюраторы, которые имеют электроклапан холодного хода, отличаются:

Видео:Электричество за 2 минуты! Напряжение, сила, мощность, постоянный и переменный ток. ПРОСТО О СЛОЖНОМСкачать

Электричество за 2 минуты! Напряжение, сила, мощность, постоянный и переменный ток. ПРОСТО О СЛОЖНОМ

Номинальные обороты двигателя

Введение
Тяговый расчет проектируемого трактора проводится с целью определения мощности двигателя, необходимой для получения расчетной силы тяги при различных рекомендуемых скоростях движения. С помощью тягового расчета делают выбор числа передач и наиболее рациональной разбивки передаточного отношения, обеспечивающих получение минимальной для данного типа и класса тракторов скорости, а также промежуточных и максимальных скоростей.

Основными этапами тягового расчета являются: определение силы тяги трактора по балансу мощностей и составление тяговой характеристики трактора, с помощью которой определяют возможности наиболее рационального его использования. Кроме того, рассматриваются вопросы, связанные с выбором основных параметров проектируемого трактора и структуры ряда передаточных чисел его трансмиссии.

Тяговый расчет трактора производится на основании данных задания.

Графическая часть работы включает в себя:

а) скоростную характеристику двигателя и лучевую диаграмму загрузки двигателя на передачах;

б) кинематическую схему трансмиссии трактора;

в) совмещенные потенциальную и тяговую характеристики трактора.

Анализ исходных данных

Назначение трактора

Слово «трактор» произошло от латинского слова «трако» – «тащу», «тяну». В этом и заключается главное назначение трактора: он или тащит на себе различные машины – орудия, или тянет их за собой. Но одно дело – тянуть легкую повозку по хорошо укатанной дороге и совсем другое – тянуть плуг по целине. Кроме того, трактор должен еще передавать энергию прицепленным к нему или навешенным на него машинам-орудиям (плугам, сеялкам, культиваторам) и уборочным машинам.

Трактор выполняет многочисленные виды работ в сельском и лесном хозяйстве, в промышленности и строительстве. Трактор-экскаватор, трактор-бульдозер, трактор-канавокопатель, трактор-погрузчик, трактор-тягач, трактор- трубоукладчик, лесосплавный трактор-амфибия это далеко не полный перечень существующих тракторов.

Больше всего тракторов в сельском хозяйстве, здесь они являются основой механизации производства.

Существуют сельскохозяйственные тракторы нескольких видов: тракторы общего назначения, используемые в соединении агрегата с прицепными и навесными машинами для пахоты, посева, культивации, уборки; универсально-пропашные, с помощью которых проводят междурядную обработку (рыхление, окучивание, опыливание, опрыскивание) и уборку картофеля, сахарной свеклы, подсолнечника и других пропашных культур; специальные, приспособленные для работы на крутых склонах, болотистых почвах, в садах, виноградниках, на плантациях хлопчатника.

Все эти тракторы не похожи один на другой по внешнему виду, развивают разную мощность, передвигаются с разной скоростью, соединяются с разными машинами. Но каждый из них обязательно состоит из одних и тех же основных частей: двигателя, силовой передачи (трансмиссии), ходовой части, рабочего оборудования и органов управления.

Трактора различного назначения представлены на рисунке 2.1.1

Вес трактора [Q]

Вес машины. В исходных данных указана масса трактора (кг), для расчета нам потребуется вес (Н).

g – ускорение свободного падения.

Рисунок 2.1 – Образцы тракторов различного назначения

Для гусеничного трактора сцепным весом является рабочий вес всего трактора, а для колесного – рабочий вес, приходящийся на ведущие колеса.

Коэффициент самоперекатывания [f]

Гусеничный трактор при сопротивлении перекатыванию должен учитывать возникающие потери в процессе трения элементов движителя и деформации грунта в связи с действием различных нагрузок от поверхности гусениц.

Внутренние потери обусловлены трением направляющих колес и различных катков в подшипниках, трением имеющихся звеньев гусениц, находящихся в шарнирах, а также биением самих гусениц. Учет данных потерь ведется коэффициентом, а компенсация происходит посредством подведения к гусеницам ведущего крутящего момента. Деформация грунта, возникающая во время угловых поворотов, и вертикальное прессование почвы вызывают внешние потери. Таким образом, нагрузка опорных катков передается на гусеницы и образуется колея.

Внешние потери учитываются также коэффициентом. Их компенсирует касательная сила тяги. Среди всех потерь именно внутренним потерям, возникающим в гусеничном движителе, отводится 60%. Именно поэтому необходимо создать требуемое натяжение гусениц с соблюдением всех правил техобслуживания. Потерям от вертикальной деформации почвы отводится лишь 20%, а от буксования гусениц итого меньше – 3%.

Коэффициент равен примерно 0,08…0,12 и 0,06…0,08 для гусеничного и колесного тракторов соответственно. Коэффициент самоперекатывания может меняться в значительных пределах 0,05…0,3 при нагрузках типа бульдозерных и на слабых грунтах.

Коэффициент сцепления [φ

Величина, соответствующая коэффициенту трения скольжения колеса (трака гусеницы) по поверхности, т.е. при коэффициенте скольжения, равном единице. Обычно это понятие распространяют на все значения при коэффициентах скольжения от единицы до значения, соответствующего максимальному коэффициенту сцепления. Коэффициенты сцепления указаны в таблице 2.1.

Таблица 2.1 – Коэффициенты сцепления

МатериалРезиновые шиныТраковая лента
Сила сцепления
Бетон0,900,45
Глинистый суглинок, сухой0,550,90
Глинистый суглинок, влажный0,450,70
Изрезанный колеями тяжелый суглинок0,400,70
Сухой песок0,200,30
Влажный песок0,400,50
Карьерный грунт0,650,55
Плотный снег0,200,27
Лед0,120,12
Плотный грунт0,550,90
Рыхлый грунт0,450,60
Уголь в отвале0,450,60

Тип трансмиссии

Трансмиссия трактора, как правило, многопоточная, то есть передает мощность двигателя не только на ходовую часть, но и для привода агрегатируемых машин и вспомогательных механизмов.

Современные тракторы оборудуются трансмиссиями нескольких различных типов:

  • Механические ступенчатые;
  • Механические бесступенчатые;
  • Гидромеханические;
  • Гидрообъемные;
  • Электрические и электромеханические.

Читайте также: Чем помыть мотор в вытяжке

При выполнении курсовой работы будут рассматриваться 2 вида трансмиссий – МСТ и ГМТ.

1) механические ступенчатые трансмиссии (МСТ). Механические ступенчатые трансмиссии имеют наименьшую стоимость и наиболее компактны при одинаковой величине передаваемой мощности, но не позволяют плавно регулировать скорость и тяговое усилие трактора. Механическая трансмиссия трактора состоит из главной фрикционной муфты сцепления, коробки передач, центральной (главной) передачи, конечных передач, передачи механизма отбора мощности. Дополнительно в механическую трансмиссию могут входить: увеличитель крутящего момента, ходоуменьшитель, редуктор-умножитель числа передач, раздаточная коробка. На гусеничных тракторах, кроме того, в состав трансмиссии входит механизм поворота.

Видео:Синхронный и асинхронный двигатели. Отличия двигателейСкачать

Синхронный и асинхронный двигатели. Отличия двигателей

Инжекторные двигатели с плавающими оборотами

Следует отметить, что дроссельный узел часто загрязняется. После чего в дальнейшем происходит нестабильное функционирование оборотов холостого хода. Канал полностью забивается грязью и происходит перекрытие байпасного канала. По мнению профессионалов, дроссельные узлы можно с легкостью разобрать и очистить, то это не представляет особой опасности для устройства.

Если происходит посторонний подсос воздуха, то в датчике отображаются неправильные данные. То есть это, может, привести к убытию или добавлению горючего. Что приводит в заблуждение водителя. Поэтому для выровнения соотношения смеси, проводится полноценная очистка. Таким образом, можно урегулировать соотношение оборотов. Прежде чем осуществляется процесс нормализации подачи воздуха, специалисты осматривают устройство.

Видео:Как выбрать и настроить преобразователь частоты? | Ошибки при выборе частотникаСкачать

Как выбрать и настроить преобразователь частоты? | Ошибки при выборе частотника

Угловая скорость

Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.

Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.

Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:

  • ω – угловая скорость (рад./с);
  • ∆ϕ – изменение угла отклонения при повороте (рад.);
  • ∆t – время, затраченное на отклонение (с).

Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.

Угловая скорость в конкретных случаях

На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.

Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.

  • π – число, равное 3,14;
  • ν – частота вращения, (об./мин.).

В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:

Видео:Номинальная и максимальная мощность динамика. Почему упаковкам верить нельзя!Скачать

Номинальная и максимальная мощность динамика. Почему упаковкам верить нельзя!

Как запустить мотор с использованием эфира

Ограничитель агрегата ограничивает максимальные обороты копенчатого вала двигателя. Поэтому чтобы запустить двигательно и привести в нормально состояние, необходимо воспользоваться диэтиловым эфиром.

Высокая летучесть концентрата и температура воспламенения отлично реагируют на процесс и помогают в запуске двигателя. Если вы не умеете пользоваться коварным веществом, тогда лучше доверить дело профессионалам, чтобы избежать серьезных последствий.

Скорость сгорания эфира достаточно велика. Поэтому при неправильном применении соотношения, можно вызвать взрывной эффект. Чтобы предотвратить подобные последствия, специалисты пользуются дополнительными компонентам, которые отлично взаимодействуют с эфиром. Если процесс проводится в зимний период, тогда следует подумать об эксплуатации двигателя.

Многие специалисты рекомендуют использовать бензиновый, качественный движок. Чтобы не перезагружать свой бюджет лишними затратами, желательно хорошо подумать обо всех деталях и только после этого подобрать соответствуюбщий автомобиль. Рекомендуемый предмет, позволит передвигаться без лишних затрат.

Видео:Не хватает мощности двигателя, что делать? Есть выход!Скачать

Не хватает мощности двигателя, что делать? Есть выход!

Основные показатели двигателя

Сгорание топлива происходит внутри ДВС, в специальной камере цилиндра. Это приводит в движение поршень, который, совершая циклические возвратно-поступательные движения, проворачивает коленчатый вал. Таков упрощенный принцип работы любого поршневого двигателя внутреннего сгорания.

Основные характеристики ДВС можно оценить тремя основными показателями:

  • мощность двигателя;
  • крутящий момент;
  • расход топлива.

Основные показатели ДВС
Рассмотрим более подробно каждый из этих показателей.

Видео:Что такое ШИМ? Как ШИМ регулирует яркость, температуру, обороты двигателя и напряжение? Разбираемся!Скачать

Что такое ШИМ? Как ШИМ регулирует яркость, температуру, обороты двигателя и напряжение? Разбираемся!

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Видео:Регулирование частоты вращения двигателей постоянного токаСкачать

Регулирование частоты вращения двигателей постоянного тока

Способы определения характеристик электромотора.

Чтобы определить, к какой из этих групп относится двигатель, не нужно разбирать его, как это советуют некоторые специалисты, чтобы обеспечить себе заказ на работу. Дело в том, что разбор электродвигателя может осуществить только мастер достаточной квалификации. На самом же деле достаточно открыть защитную крышку (другое название подшипниковый щит) и найти катушку обмотки. Таких катушек может быть несколько, но достаточно одной. В случае если к валу прикреплены полумуфта или шкив, потребуется снять еще и нижний щит.

Если катушки соединены при помощи деталей, которые мешают рассмотреть информацию, эти детали ни в коем случае нельзя отсоединять. Нужно попробовать определить на глаз соотношение размера катушки и статора.

Статором называется неподвижная часть электромотора, подвижная же имеет название ротор. В зависимости от конструктивных особенностей, в качестве ротора может выступать как сама катушка, так и магниты.

Если катушка закрывает собой половину кольца статора, такой двигатель относится к третьей группе, то есть способен выдавать до 3000 оборотов. Если размер катушки составляет треть от размеров кольца, это мотор второго типа, соответственно, он способен развить 1500 оборотов в минуту. Наконец, если катушка только на четверть закрывает собой кольцо, это первый тип. Электромотор развивает мощность в 1000 оборотов.

Существует еще один способ определения частоты вращения вала роторной части. Для этого также нужно снять крышку и найти верхнюю часть обмотки. По расположению секций обмотки и определяется скорость. Обычно внешняя секция занимает 12 пазов. Если сосчитать общее количество пазов и разделить на 12, можно получить число полюсов. Если число полюсов равно 2, двигатель имеет скорость вращения около 3000 об/мин. Если полюсов получилось 4, это соответствует 1500 оборотам в минуту. Если 6, то 1000 об/мин. Если 8, то 700 оборотов.

Третий способ определения количества оборотов внимательно осмотреть бирку на самом двигателе. Цифра на маркировке в конце и соответствует числу полюсов. Например, для маркировки АИР160S6 последняя цифра 6 указывает, сколько полюсов использует катушка.

Проще же всего измерить число оборотов специальным прибором тахометром. Но в силу узкой специализации применения данный способ нельзя рассматривать как общедоступный. Таким образом, даже если не сохранилось никакой технической документации, существует как минимум 4 способа определить число оборотов электрического мотора.

При поступлении в ремонт электродвигателя с отсутствующей табличкой, приходиться определять мощность и обороты по статорной обмотке. В первую очередь нужно определить обороты электродвигателя. Самый простой способ для определения оборотов в однослойной обмотке это посчитать количество катушек (катушечных групп).

Количество катушек (катушечных групп) в обмотке шт.Частота вращения об/мин.
При частоте питающей сети f=50Гц.
ТрёхфазныеОднофазные
в рабочей обмотке
Односл.Двухсл.
6623000
61241500
91861000
12248750
153010600
183612500
214214428
244816375
275418333
306020300
367224250

По таблице у однослойных обмоток на 3000 и 1500 об/мин. одинаковое количество катушек по 6, визуально отличить их можно по шагу. Если от одной стороны катушки к другой стороне провести линию, и линия будет проходить через центр статора, то это обмотка 3000 об/мин. рисунок №1. У электродвигателей на 1500 оборотов шаг меньше.

2p24681012
об/ мин f=50Гц300015001000750600500
2p141618202224
об/ мин f=50Гц428375333300272250
2p262830323436
об/ мин f=50Гц230214200187,5176,4166,6
2p384042444648
об/ мин f=50Гц157,8150142,8136,3130,4125

Видео:Как трехфазный асинхронный двигатель работает на одной фазе? #энерголикбезСкачать

Как трехфазный асинхронный двигатель работает на одной фазе?   #энерголикбез

Что такое крутящий момент

Крутящий момент двигателя рассчитывается по формуле: M = F*R, где F – это сила, с которой давит поршень, R — длина плеча (рычага). В нашем случае плечом будет расстояние от оси вращения коленчатого вала до места крепления шатунной шейки. Этот параметр измеряется в ньютонах на метр (Hм). 1H соответствует 0,1 кг, который давит на конец рычага длиной в метр.

Крутящий момент ДВС характеризует показатель силы вращения коленчатого вала и определяет динамику разгона автомобиля.

Видео:Как узнать число пар полюсов и частоту вращения асинхронного трёхфазного двигателя по статору.Скачать

Как узнать число пар полюсов и частоту вращения асинхронного трёхфазного двигателя по статору.

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Читайте также: Инструкция по работе с лодочными моторами

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети

Видео:Как работает ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ Часть 1Скачать

Как работает ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ Часть 1

Внешняя скоростная характеристика (ВСХ)

Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.

Внешняя скоростная характеристика

На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, – крутящий момент, ge – удельный расход топлива. Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад. В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.

Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.

Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.

Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.

Видео:Частотник и однофазный мотор? Никогда!Скачать

Частотник и однофазный мотор? Никогда!

Основные характеристики электродвигателей

Номинальный режим электродвигателя соответствует данным, указанным на его щитке (паспорте). В этом режиме двигатель должен удовлетворять требованиям, установленным ГОСТом.

Существует восемь различных режимов работы, из них основными можно считать:

· продолжительный номинальный режим;

· кратковременный номинальный режим с длительностью рабочего периода 10, 30 и 90 мин;

· повторно-кратковременный номинальный режим с продолжительностью включения (ПВ) 15, 25, 40, 60%, с продолжительностью одного цикла не более 10 мин.

н электродвигателя называется указанная на щитке полезная механическая мощность на валу при номинальном режиме работы. Номинальная мощность выражается в Вт или кВт.

Номинальная частота вращения nн

вала электродвигателя называется указанное на щитке число оборотов в минуту, соответствующее номинальному режиму.

Номинальный момент вращения

— момент, развиваемый двигателем на валу при номинальной мощности и номинальной частоте вращения:

н — номинальный момент вращения, Н·м (1 кгс·м = 9,81 Н·м ≈ 10 Н·м);

н — номинальная мощность, кВт;

н — номинальная частота вращения, об/мин.

hн электродвигателя — отношение его номинальной

мощности к мощности, потребляемой им из сети при номинальном напряжении:

н — номинальная мощность, кВт;

н — номинальное (линейное) напряжение, В;

н — номинальная сила тока, А;

cosφн — номинальный коэффициент мощности.

электродвигателя называется сила тока, соответствующая номинальному режиму. Действительное значение силы тока при номинальном режиме может отличаться от указанного на щитке электродвигателя в пределах установленных допусков для к.п.д. и коэффициента мощности.

Максимальный вращающий момент

электродвигателя — наибольший вращающий момент, развиваемый при рабочем соединении обмоток и постепенном повышении момента сопротивления на валу сверх номинального при условии, что напряжение на зажимах двигателя и частота переменного тока остаются неизменными и равными номинальным значениям.

Начальный пусковой вращающий момент

электродвигателя — момент вращения его при неподвижном роторе, номинальных значениях напряжения и частоты переменного тока и рабочем соединении обмоток.

Минимальным вращающим моментом

электродвигателя в процессе пуска называется наименьший вращающий момент, развиваемый двигателем при рабочем соединении обмоток и частоте вращения в пределах от нуля до значения, соответствующего максимальному вращающему моменту (напряжение на зажимах двигателя и частота переменного тока должны оставаться неизменными и равными их номинальным значениям).

Номинальная частота вращения

вала электродвигателя является следующим за мощностью параметром, от которого в значительной мере зависят конструктивное оформление, габариты, стоимость и экономичность работы электропривода. Наиболее приемлемыми в диапазоне мощностей от 0,6 до 100 кВт являются частоты вращения 3000, 1500 и 1000 об/мин (синхронные). Электродвигатели с частотой вращения 750 об/мин (восьмиполюсные) малых мощностей имеют низкие энергетические показатели. При одинаковой мощности электродвигатели с более высокой частотой вращения имеют более высокие значения к.п.д. и cosφ, а также меньшие размеры и массу, что определяет их меньшую стоимость.

основного исполнения относительное значение силы тока холостого хода

= (0,2—0,6)
I
н (оно тем больше, чем меньше номинальная частота вращения и мощность электродвигателя). Зависимость тока холостого хода от частоты вращения электродвигателя приведена в таблице 2.1.

Таблица 2.1. Токи холостого хода для двигателей основного исполнения

Среднее значение токов холостого хода

(в долях от силы номинального тока) при синхронной частоте вращения, об/мин

Видео:Как определить частоту вращения двигателяСкачать

Как определить частоту вращения двигателя

Роль мощности и крутящего момента двигателя

Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.

Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:

  • Взаимосвязь мощности и крутящего момента можно выразить в формуле: P = 2П*M*n, где Р – это мощность, M – показатель крутящего момента, а n – количество оборотов коленвала в единицу времени.
  • Крутящий момент более конкретный показатель характеристики двигателя. Низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
  • Мощность двигателя будет возрастать с повышением оборотов: чем выше, тем больше мощность, но до определенных пределов.
  • Крутящий момент увеличивается с повышением количества оборотов, но при достижении максимального значения показатели крутящего момента снижаются.
  • При равных показателях мощности и крутящего момента более эффективным будет двигатель с меньшим расходом топлива.

Видео:Асинхронный двигатель. Регулирование частоты вращения. Лекция №15Скачать

Асинхронный двигатель. Регулирование частоты вращения. Лекция №15

Корректируем обороты

Работа с разнообразным электрическим инструментом и оборудованием в быту или на производстве непременно ставит вопрос о том, как регулировать обороты электродвигателя. Например, становится необходимым изменить скорость передвижения деталей в станке или по конвейеру, скорректировать производительность насосов, уменьшить или увеличить расход воздуха в вентиляционных системах.

Осуществлять указанные процедуры за счет понижения напряжения практически бессмысленно, обороты будут резко падать, существенно снизится мощность устройства. Поэтому используются специальные устройства, позволяющие корректировать обороты двигателя. Рассмотрим их более подробно.

Микроконтроллер управляет всем процессом работы преобразователя

Благодаря такому подходу появляется возможность добиться плавного повышения оборотов двигателя, что крайне важно в механизмах с большой нагрузкой. Медленный разгон снижает нагрузки, положительно сказываясь на сроке службы производственного и бытового оборудования

Все преобразователи оснащаются защитой, имеющей несколько степеней. Часть моделей работает за счет однофазного напряжения в 220 В. Возникает вопрос, можно ли сделать так, чтобы трехфазный мотор вращался благодаря одной фазе? Ответ окажется положительным при соблюдении одного условия.

При подаче однофазного напряжения на обмотку требуется осуществить «толчок» ротора, поскольку сам он не сдвинется с места. Для этого нужен пусковой конденсатор. После начала вращения двигателя оставшиеся обмотки будут давать недостающее напряжение.

Существенным минусом такой схемы считается сильный перекос фаз. Однако он легко компенсируется включением в схему автотрансформатора. В целом, это довольно сложная схема. Преимущество же частотного преобразователя заключается в возможности подключения моторов асинхронного типа без применения сложных схем.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    🔍 Видео

    Частотный преобразователь на 4кВт с АлиЭкспресс (дешевый да еще и 380 умеет делать)Скачать

    Частотный преобразователь на 4кВт с АлиЭкспресс (дешевый да еще и 380 умеет делать)

    Подключение и настройка частотного преобразователя ESQ-210Скачать

    Подключение и настройка частотного преобразователя ESQ-210
Поделиться или сохранить к себе:
Технарь знаток