Что такое осевой момент инерции вала

Что такое осевой момент инерции вала

При некоторых видах деформаций прочность и жесткость (способность противостоять деформации) элементов конструкций зависит не только от величины поперечного сечения, но и от формы этого сечения.
Самый простой пример — обыкновенную школьную линейку можно легко изогнуть относительно широкой стороны поперечного сечения и совершенно невозможно изогнуть относительно его короткой стороны. При этом общая площадь сечения в обоих случаях одинакова. На основании этого примера становится очевидным, что на сопротивление некоторым видам деформации оказывает влияние (иногда — решающее) не только величина площади сечения бруса, но и его геометрическая форма.
При изучении деформаций изгиба и кручения нам потребуется знание некоторых геометрических характеристик плоских сечений, которые оказывают влияние на способность конструкций сопротивляться деформациям относительно той или иной оси либо полюса (точки).

Чтобы понять суть явления и влияния этих геометрических характеристик на сопротивление бруса, например, изгибу, следует обратиться к основополагающим постулатам сопромата. Как известно из установленного в 1660 году английским физиком Робертом Гуком закона, напряжение в сечениях бруса прямо пропорционально его относительному удлинению. Очевидно, что волокна, расположенные дальше от оси изгиба, растягиваются (или сжимаются) сильнее, чем расположенные вблизи оси. Следовательно, и напряжения возникающие в них будут бόльшими.
Можно привести условную сравнительную аналогию между напряжением в разных точках сечения бруса с моментом силы — чем больше плечо силы — тем больше ее момент (относительно оси или точки). Аналогично — чем дальше от какого-либо полюса (оси) отстоит точка в сечении, тем большее напряжение в ней возникает при попытке изогнуть или скрутить брус относительно этого полюса (оси).

Содержание
  1. Статический момент площади
  2. Полярный момент инерции
  3. Осевой, полярный и центробежный моменты инерции фигуры
  4. Момент инерции для чайников: определение, формулы, примеры решения задач
  5. Что такое инерция
  6. Определение момента инерции
  7. Теорема Штейнера
  8. Пример решения задачи на нахождение момента инерции
  9. Моменты инерции поперечного сечения
  10. момент инерции сечения — это сумма всех элементарно малых площадей dF, составляющих это сечение, умноженных на квадрат расстояния от этих площадей до выбранной оси :
  11. Среди осей прямоугольной системы координат, проходящих через центр тяжести поперечного сечения, есть две взаимно-перпендикулярные оси, относительно которых осевые моменты инерции принимают максимальное и минимальное значение, при этом центробежный момент инерции сечения Izy = 0. Такие оси называют главными центральными осями поперечного сечения, а моменты инерции относительно таких осей – главными центральными моментами инерции
  12. 🔥 Видео

Статический момент площади

Статическим моментом площади плоской фигуры относительно оси, лежащей в той же плоскости, называется взятая по всей площади сумма произведений элементарных площадок (Si) на расстояния (ri)от них до этой оси.

Что такое осевой момент инерции вала

Если упростить это определение, то статический момент инерции плоской фигуры относительно какой-либо оси (лежащей в той же плоскости, что и фигура) можно получить следующим образом:

  • разбить фигуру на крохотные (элементарные) площадки (рис. 1);
  • умножить площадь каждой площадки на расстояние ri от ее центра до рассматриваемой оси;
  • сложить полученные результаты.

Статический момент площади плоской фигуры обозначают S с индексом оси, относительно которой он рассматривается: Sx , Sy , Sz .

Примечание: в разных учебниках или других источниках информации обозначение тех или иных физических величин может отличаться от приведенных на этом сайте. Как вы понимаете, от условного обозначения величин суть описываемых явлений и закономерностей не изменяется.

Анализ этих формул позволяет сделать вывод, что статический момент площади фигуры относительно оси, лежащей в этой же плоскости, равен произведению площади фигуры на расстояние от ее центра тяжести до этой оси.
Из этого вывода следует еще один вывод — если рассматриваемая ось проходит через центр тяжести плоской фигуры, то статический момент этой фигуры относительно данной оси равен нулю.

Единица измерения статического момента площади — метр кубический (м 3 ).
При определении статического момента площади сложной фигуры можно применять метод разбиения, т. е. определять статический момент всей фигуры, как алгебраическую сумму статических моментов отдельных ее частей. При этом сложная геометрическая фигура разбивается на простые по форме составные части — прямоугольники, треугольники, окружности, дуги и т. п., затем для каждой из этих простых фигур подсчитывается статический момент площади, и определяется алгебраическая сумма этих моментов.

Полярный момент инерции

Полярным моментом инерции плоской фигуры относительно полюса (точки), лежащего в той же плоскости, называется сумма произведений элементарных площадок (Si) этой фигуры на квадрат их расстояний (r 2 i) до полюса.
Полярный момент инерции обозначают Iρ (иногда его обозначают Jρ ), а формула для его определения записывается так:

Единица измерений полярного момента инерции — м 4 , из чего следует, что он не может быть отрицательным.
Понятие полярного момента инерции понадобится при изучении деформаций кручения круглых валов, поэтому приведем формулы для определения полярного момента квадратного, круглого и кольцевого сечения.

Видео:Геометрические характеристики. Моменты инерции. Радиусы инерции. Сопромат.Скачать

Геометрические характеристики. Моменты инерции. Радиусы инерции. Сопромат.

Осевой, полярный и центробежный моменты инерции фигуры

Осевой момент инерции фигуры — это интеграл произведений элементарных площадей на квадраты их расстояний до рассматриваемой оси. Формулы осевого момента инерции произвольной фигуры (см. рис. 4.1) относительно осей x и y:

Полярный момент инерции фигуры относительно данной точки (полюса) — это интеграл произведений элементарных площадей на квадраты их расстояний до полюса:

Если через полюс проведена система взаимно перпендикулярных осей x и y, то , и формула полярного момента инерции равна сумме осевых моментов инерции относительно осей x и y:

Из формул осевых и полярного моментов инерции видно: значения осевых и полярного моментов инерции всегда положительны, так как координаты и расстояние возведены в квадрат.

Центробежный момент инерции фигуры — это интеграл произведений элементарных площадей на их расстояния до осей x и y:

Моменты инерции измеряются в единицах длины в четвертой степени (как правило, см4).

Понятие момента инерции поперечного сечения ввел в 1834 г. французский ученый Н. Перси.

Видео:Теория (часть 1) осевые моменты инерцииСкачать

Теория (часть 1) осевые моменты инерции

Момент инерции для чайников: определение, формулы, примеры решения задач

Что такое осевой момент инерции вала

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Видео:Момент инерцииСкачать

Момент инерции

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Видео:Урок 94. Вычисление моментов инерции телСкачать

Урок 94. Вычисление моментов инерции тел

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Что такое осевой момент инерции вала

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Что такое осевой момент инерции вала

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Что такое осевой момент инерции вала

Видео:Расчёт момента инерции тела относительно оси вращения. Момент инерции однородного стержняСкачать

Расчёт момента инерции тела относительно оси вращения. Момент инерции однородного стержня

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Что такое осевой момент инерции вала

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Что такое осевой момент инерции вала

Видео:Моменты инерции простейших фигур. Оси центральные и главные. Что это и где. #сопроматСкачать

Моменты инерции простейших фигур. Оси центральные и главные. Что это и где. #сопромат

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

Что такое осевой момент инерции вала

Массу кольца можно представить в виде:

Что такое осевой момент инерции вала

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

Что такое осевой момент инерции вала

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Что такое осевой момент инерции вала

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Читайте также: Опора карданного вала сэви эксперт газ 3302

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Видео:Определение осевых моментов инерции составного несимметричного сечения. СопроматСкачать

Определение осевых моментов инерции составного несимметричного сечения. Сопромат

Моменты инерции поперечного сечения

Иногда при расчете строительных конструкций необходимо знать значение момента инерции поперечного сечения. При этом само понятие момент инерции знает любой инженер, а вот откуда взялось это понятие, и какой его физический смысл, могут объяснить не многие. Как правило в любом справочнике или учебнике по сопротивлению материалов дается приблизительно следующее определение для момента инерции:

Видео:Теория(часть 2) осевые моменты инерцииСкачать

Теория(часть 2) осевые моменты инерции

момент инерции сечения — это сумма всех элементарно малых площадей dF, составляющих это сечение, умноженных на квадрат расстояния от этих площадей до выбранной оси :

I = ∑ri 2 dF i =∫r 2 dF (1.1)

В принципе и определение и формула, его описывающая, не сложные и запомнить их намного легче, чем вникнуть в суть. Но все-таки попробуем разобраться, что же такое момент инерции и откуда он взялся.

Понятие момент инерции пришло в сопромат и строительную механику из другого раздела физики, изучающего кинематику движения, в частности вращательное движение. Но все равно начнем издалека.

Я точно не знаю, упало ли Исааку Ньютону на голову яблоко, упало оно рядом, или вообще не падало, теория вероятности допускает все эти варианты (к тому же в этом яблоке слишком много от библейской легенды о древе познания), однако я уверен, что Ньютон был наблюдательным человеком, способным делать выводы из своих наблюдений. Так наблюдательность и воображение позволили Ньютону сформулировать основной закон динамики (второй закон Ньютона), согласно которому масса тела m, умноженная на ускорение a, равна действующей силе Q (вообще-то более привычным для силы является обозначение F, но так как дальше мы будем иметь дело с площадью, которая также часто обозначается как F, то я использую для внешней силы, рассматриваемой в теоретической механике как сосредоточенная нагрузка, обозначение Q, сути дела это не меняет):

По мне величие Ньютона именно в простоте и понятности данного определения. А еще, если учесть, что при равноускоренном движении ускорение а равно отношению приращения скорости ΔV к периоду времени Δt, за который скорость изменилась:

a = Δv/Δt = (v — vо)/t (1.3.1)

при Vо = 0 a = v/t (1.3.2)

то можно определить основные параметры движения, такие как расстояние, скорость, время и даже импульс р, характеризующий количество движения:

Например, яблоко, падающее с разной высоты под действием только силы тяжести, будет падать до земли разное время, иметь разную скорость в момент приземления и соответственно разный импульс. Другими словами, яблоко, падающее с бóльшей высоты, будет дольше лететь и сильнее треснет по лбу незадачливого наблюдателя. И все это Ньютон свел к простой и понятной формуле.

А еще Ньютон сформулировал закон инерции (первый закон Ньютона): если ускорение а = 0, то в инерциальной системе отсчета невозможно определить, находится ли наблюдаемое тело, на которое не действуют внешние силы, в состоянии покоя или движется прямолинейно с постоянной скоростью. Это свойство материальных тел сохранять свою скорость, пусть даже и нулевую, называется инертностью. Мерой инертности является инерционная масса тела. Иногда инерционная масса называется инертной, но сути дела это не меняет. Считается, что инерционная масса равна гравитационной массе и потому часто не уточняется, какая именно масса имеется в виду, а упоминается просто масса тела.

Не менее важным и значимым является и третий закон Ньютона, согласно которому сила действия равна силе противодействия, если силы направлены по одной прямой, но при этом в противоположные стороны. Не смотря, на кажущуюся простоту, и этот вывод Ньютона гениален и значение этого закона трудно переоценить. Об одном из применений этого закона чуть ниже.

Однако данные положения справедливы только для тел, движущихся поступательно, т.е. по прямолинейной траектории и при этом все материальные точки таких тел двигаются с одинаковой скоростью или одинаковым ускорением. При криволинейном движении и в частности при вращательном движении, например, когда тело вращается вокруг своей оси симметрии, материальные точки такого тела перемещаются в пространстве с одинаковой угловой скоростью w, но при этом линейная скорость v у различных точек будет разная и эта линейная скорость прямо пропорциональна расстоянию r от оси вращения до этой точки:

при этом угловая скорость равна отношению приращения угла поворота Δφ к периоду времени Δt, за который угол поворота изменился:

w = Δφ/Δt = (φ — φо)/t (1.6.1)

при φо = 0 w = φ/t (1.7.2)

соответственно нормальное ускорение аn при вращательном движении равно:

an = v 2 /r = w 2 r (1.8)

И получается, что для вращательного движения мы не можем прямо использовать формулу (1.2), так как при вращательном движении одного только значения массы тела недостаточно, требуется еще знать распределение этой массы в теле. Получается, что чем ближе материальные точки тела к оси вращения, тем меньшую силу требуется приложить, чтобы заставить тело вращаться и наоборот, чем дальше материальные точки тела от оси вращения, тем большую силу нужно приложить, чтобы заставить тело вращаться (в данном случае речь идет о приложении силы в одной и той же точке). К тому же при вращении тела более удобно рассматривать не действующую силу, а вращающий момент, так как при вращательном движении точка приложения силы также имеет большое значение.

Поразительные свойства момента нам известны со времен Архимеда и если применить понятие момента к вращательному движению, то значение момента М будет тем больше, чем больше расстояние r от оси вращения до точки приложения силы F (в строительной механике внешняя сила часто обозначается как Р или Q):

Из этой также не очень сложной формулы выходит, что если сила будет приложена по оси вращения, то никакого вращения не будет, так как r = 0, а если сила будет приложена на максимальном удалении от оси вращения, то и значение момента будет максимальным. А если мы подставим в формулу (1.9) значение силы из формулы (1.2) и значение нормального ускорения и формулы (1.8), то получим следующее уравнение:

М = mw 2 r·r = mw 2 r 2 (1.10)

В частном случае когда тело является материальной точкой, имеющей размеры намного меньше, чем расстояние от этой точки до оси вращения, уравнение (1.10) применимо в чистом виде. Однако для тела, вращающегося вокруг одной из своих осей симметрии, расстояние от каждой материальной точки составляющей данное тело, всегда меньше одного из геометрических размеров тела и потому распределение массы тела имеет большое значение, в этом случае требуется учесть эти расстояния отдельно для каждой точки:

M = ∑r i 2 w 2 mi (1.11.1)

Мс= w 2 ∫r 2 dm (1.11.2) — при вращении тела вокруг оси симметрии

И тогда получается, что согласно третьему закону Ньютона в ответ на действие вращающего момента будет возникать так называемый момент инерции I. При этом значения вращающего момента и момента инерции будут равны, а сами моменты направлены в противоположные стороны. При постоянной угловой скорости вращения, например w = 1, основными величинами, характеризующими вращающий момент или момент инерции будут масса материальных точек, составляющих тело, и расстояния от этих точек до оси вращения. В итоге формула момента инерции примет следующий вид:

Ic = ∫r 2 dm (1.11.2) — при вращении тела вокруг оси симметрии

где I — общепринятое обозначение момента инерции, Ic — обозначение осевого момента инерции тела, кг/м 2 . Для однородного тела, имеющего одинаковую плотность ρ по всему объему тела V формулу осевого момента инерции тела можно записать так:

Ic = ∫ρr 2 dV (1.13)

Таким образом момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении.

Все круг замкнулся. И тут может возникнуть вопрос, какое отношение все эти законы динамики и кинематики имеют к расчету статических строительных конструкций? Оказывается, что ни на есть самое прямое и непосредственное. Во-первых потому, что все эти формулы выводились физиками и математиками в те далекие времена, когда таких дисциплин, как «Теоретическая механика» или «Теория сопротивления материалов» попросту не существовало. А во-вторых потому, что весь расчет строительных конструкций и построен на основе указанных законов и формулировок и пока ни кем не опровергнутом утвержении о равенстве гравитационной и инертой масс. Вот только в теории сопротивления материалов все еще проще, как ни парадоксально это звучит.

Читайте также: Балансировка карданного вала королев

А проще потому, что при решении определенных задач может рассматриваться не все тело, а только его поперечное сечение, а при необходимости несколько поперечных сечений. Но в этих сечениях действуют такие же физические силы, правда имеющие несколько иную природу. Таким образом, если рассматривать некое тело, длина которого постоянна, а само тело является однородным, то если не учитывать постоянные параметры — длину и плотность (l = const, ρ = const) — мы получим модель поперечного сечения. Для такого поперечного сечения с математической точки зрения будет справедливым уравнение:

Iр = ∫r 2 dF (2.1) → (1.1)

где Ip — полярный момент инерции поперечного сечения, м 4 . В итоге мы получили формулу, с которой начинали (а вот стало ли понятнее, что такое момент инерции сечения, не знаю).

Так как в теории сопротивления материалов часто рассматриваются прямоугольные сечения, да и прямоугольная система координат более удобна, то при решении задач обычно рассматриваются два осевых момента инерции поперечного сечения:

Iz = ∫y 2 dF (2.2.1)

Iy = ∫z 2 dF (2.2.2)

Что такое осевой момент инерции вала

Рисунок 1. Значения координат при определении осевых моментов инерции.

Тут может возникнуть вопрос, почему использованы оси z и у, а не более привычные х и у? Так уж сложилось, что определение усилий в поперечном сечении и подбор сечения, выдерживающего действующие напряжения, равные приложенным усилиям — две разные задачи. Первую задачу — определение усилий — решает строительная механика, вторую задачу — подбор сечения — теория сопротивления материалов. При этом в строительной механике рассматривается при решении простых задач достаточно часто стержень (для прямолинейных конструкций), имеющий определенную длину l, а высота и ширина сечения не учитываются, при этом считается, что ось х как раз и проходит через центры тяжести всех поперечных сечений и таким образом при построении эпюр (порой достаточно сложных) длина l как раз и откладывается по оси х, а по оси у откладываются значения эпюр. В то же время теория сопротивления материалов рассматривает именно поперечное сечение, для которого важны ширина и высота, а длина не учитывается. Само собой при решении задач теории сопротивления материалов, также порой достаточно сложных используются все те же привычные оси х и у. Мне такое положение дел кажется не совсем правильным, так как не смотря на разницу, это все же смежные задачи и потому будет более целесообразным использование единых осей для рассчитываемой конструкции.

Значение полярного момента инерции в прямоугольной системе координат будет:

Iр = ∫r 2 dF = ∫y 2 dF + ∫z 2 dF (2.3)

Так как в прямоугольной системе координат радиус — это гипотенуза прямоугольного треугольника, а как известно квадрат гипотенузы равен сумме квадратов катетов. А еще существует понятие центробежного момента инерции поперечного сечения:

Ixz = ∫xzdF (2.4)

Видео:Моменты инерции Прямоугольника ► Вывод моментов инерции для прямоугольникаСкачать

Моменты инерции Прямоугольника ► Вывод моментов инерции для прямоугольника

Среди осей прямоугольной системы координат, проходящих через центр тяжести поперечного сечения, есть две взаимно-перпендикулярные оси, относительно которых осевые моменты инерции принимают максимальное и минимальное значение, при этом центробежный момент инерции сечения Izy = 0. Такие оси называют главными центральными осями поперечного сечения, а моменты инерции относительно таких осей – главными центральными моментами инерции

Когда в теории сопротивления материалов речь заходит о моментах инерции, то как правило в виду имеются именно главные центральные моменты инерции поперечного сечения. Для квадратных, прямоугольных, круглых сечений главные оси будут совпадать с осями симметрии. Моменты инерции поперечного сечения также называют геометрическими моментами инерции или моментами инерции площади, но суть от этого не изменяется.

В принципе самому определять значения главных центральных моментов инерции для поперечных сечений наиболее распространенных геометрических форм — квадрата, прямоугольника, круга, трубы, треугольника и некоторых других — большой необходимости нет. Такие моменты инерции давно определены и широко известны. А при расчете осевых моментов инерции для сечений сложной геометрической формы справедлива теорема Гюйгенса-Штейнера:

I = Ic + r 2 F (2.5)

таким образом, если известны площади и центры тяжести простых геометрических фигур, составляющих сложное сечение, то определить значение осевого момента инерции всего сечения не составит труда. А для того, чтобы определить центр тяжести сложного сечения, используются статические моменты поперечного сечения. Более подробно статические моменты рассматриваются в другой статье, здесь лишь добавлю. Физический смысл статического момента следующий: статический момент тела — это сумма моментов для материальных точек, составляющих тело, относительно некоторой точки (полярный статический момент) или относительно оси (осевой статический момент), а так как момент — это произведение силы на плечо (1.9), то и определяется статический момент тела соответственно:

и тогда полярный статический момент поперечного сечения будет:

Sр = ∫rdF (2.7)

Как видим, определение статического момента сходно с определением момента инерции. Но есть и принципиальная разница. Статический момент потому и называется статическим, что для тела, на которое действует сила тяжести, статический момент равен нулю относительно центра тяжести. Другими словами такое тело находится в состоянии равновесия, если опора приложена к центру тяжести тела. А согласно первому закону Ньютона такое тело или находится в состоянии покоя или движется с постоянной скоростью, т.е. ускорение = 0. А еще с чисто математической точки зрения статический момент может быть равен нулю по той простой причине, что при определении статического момента необходимо учитывать направление действия момента. Например относительно осей координат, проходящих через центр тяжести прямоугольника, площади верхней части и нижней части прямоугольника будут положительными так как символизируют силу тяжести, действующую в одном направлении. При этом расстояние от оси до центра тяжести можно рассматривать как положительное (условно: момент от силы тяжести верхней части прямоугольника пытается вращать сечение по часовой стрелке), а до центра тяжести нижней части — как отрицательное (условно: момент от силы тяжести нижней части прямоугольника пытается вращать сечение против часовой стрелки). А так как такие площади численно равны и равны расстояния от центров тяжести верхней части прямоугольника и нижней части прямоугольника, то сумма действующих моментов и составит искомый 0.

Sz = ∫ydF = 0 (2.8)

А еще этот великий ноль позволяет определять опорные реакции строительных конструкций. Если рассматривать строительную конструкцию, к которой приложена например сосредоточенная нагрузка Q в некоторой точке, то такую строительную конструкцию можно рассматривать, как тело с центром тяжести в точке приложения силы, а опорные реакции в этом случае рассматриваются, как силы приложенные в точках опор. Таким образом зная значение сосредоточенной нагрузки Q и расстояния от точки приложения нагрузки до опор строительной конструкции, можно определить опорные реакции. Например для шарнирно опертой балки на двух опорах значение опорных реакций будет пропорционально расстоянию до точки приложения силы, а сумма реакций опор будет равна приложенной нагрузке. Но как правило при определении опорных реакций поступают еще проще: за центр тяжести принимается одна из опор и тогда сумма моментов от приложенной нагрузки и от остальных опорных реакций все равно равна нулю. В этом случае момент от опорной реакции относительно которой составляется уравнение моментов, равен нулю, так как плечо действия силы = 0, а значит в сумме моментов остаются только две силы: приложенная нагрузка и неизвестная опорная реакция (для статически определимых конструкций).

Таким образом принципиальная разница между статическим моментом и моментом инерции в том, что статический момент характеризует сечение, которое сила тяжести как бы пытается сломать пополам относительно центра тяжести или оси симметрии, а момент инерции характеризует тело, все материальные точки которого перемещаются (или пытаются переместиться в одном направлении). Возможно, более наглядно представить себе эту разницу помогут следующие достаточно условные расчетные схемы для прямоугольного сечения:

Что такое осевой момент инерции вала

Рисунок 2. Наглядная разница между статическим моментом и моментом инерции.

А теперь вернемся еще раз к кинематике движения. Если проводить аналогии между напряжениями, возникающими в поперечных сечениях строительных конструкций, и различными видами движения, то в центрально растягиваемых и центрально сжатых элементах возникают напряжения равномерные по всей площади сечения. Эти напряжения можно сравнить с действием некоторой силы на тело, при котором тело будет двигаться прямолинейно и поступательно. А самое интересное, это то, что поперечные сечения центрально-растянутых или центрально сжатых элементов действительно движутся, так как действующие напряжения вызывают деформации. И величину таких деформаций можно определить для любого поперечного сечения конструкции. Для этого достаточно знать значение действующих напряжений, длину элемента, площадь сечения и модуль упругости материала, из которого изготовлена конструкция.

У изгибаемых элементов поперечные сечения также не остаются на месте, а перемещаются, при этом перемещение поперечных сечений изгибаемых элементов подобно вращению некоего тела относительно некоторой оси. Как вы уже наверное догадались, момент инерции позволяет определить и угол наклона поперечного сечения и перемещение Δl для крайних точек сечения. Эти крайние точки для прямоугольного сечения находятся на расстоянии, равном половине высоты сечения (почему — достаточно подробно описано в статье «Основы сопромата. Определенение прогиба» ). А это в свою очередь позволяет определить прогиб конструкции.

Читайте также: Двигатели с вертикальным валом в нижнем новгороде

А еще момент инерции позволяет определить момент сопротивления сечения. Для этого момент инерции нужно просто разделить на расстояние от центра тяжести сечения до наиболее удаленной точки сечения, для прямоугольного сечения на h/2. А так как исследуемые сечения не всегда симметричны, то значение момента сопротивления может быть разным для разных частей сечения.

А началось все с банального яблока. хотя нет, начиналось все со слова.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Классная статья, всё понятно, с рисунками, красота!

В данной статье сказано: Получается, что чем ближе материальные точки тела к оси вращения, тем меньшую силу требуется приложить, чтобы заставить тело вращаться и наоборот, чем дальше материальные точки тела от оси вращения, тем большую силу нужно приложить, чтобы заставить тело вращаться.
Не наоборот ли? Ведь расстояние от оси является плечом. Чем больше плечо, тем меньше силы нужно приложить для того, чтобы заставит тело вращаться. Или я вновь неправильно всё понял. Упс:(

Возможно я недостаточно ясно выразился, поэтому внес в статью соответствующую поправку. В данном случае речь идет о силе, приложенной в одной и той же точке. Например в первом случае, когда материальная точка расположена близко к центру вращения, то необходимая для вращения сила, приложенная на таком же расстоянии, будет одной. Во втором случае плечо приложения силы не изменится, а вот материальная точка будет от центра вращения значительно дальше, поэтому и сила для ее вращения потребуется больше, хотя при этом масса материальных точек в обоих случаях остается одинаковой.
Надеюсь, теперь понятно объяснил.

То самое объяснение которое так долго я искал. Лучшее на мой взгляд. Спасибо, стало все гораздо яснее!

Рад был помочь, пусть и виртуально.

Здравствуйте!
Вы пишите «соответственно нормальное ускорение аn при вращательном движении равно». На основании чего это соответственно? Для наблюдателя никакого соответствия не видно. Просто в воздухе возникла формула.

Я — практикующий инженер-строитель, который, к сожалению, как и большинство выпускников российских вузов не понимает физических смыслов многих применяемых формул и значений, с которыми работает каждый день. И вот в чем проблема — из сопромата и строймеха сделали не прикладную науку времен Гука и Эйлера, а тысячи непонятных закорючек и математических функций. Современная российская высшая школа совершенно забыла, что все великие открытия были сделаны и потом записаны в виде формул не с помощью писанины и символов, а на реальных работающих моделях. Все те знания, которые я знаю «на пять», я получил не из учебников и статей подобных вашим (пусть ваши статьи — одни из самых лучших), а с помощью проб и ошибок на реальной стройке. Поработав с шарнирно-стержневыми системами на реальных примерах (деревянные конструкции), начинаешь понимать, что написано в формулах. Так же ОЧЕНЬ сильно помогают лекции западных университетов на ютубе, в которых лекторы показывают описываемые закорючками законы и многие вещи становятся очевидными сразу. Мне 31 год и мое время КРАЙНЕ небезгранично. Уже нет годов на воспринятие материала через представление чего-то в голове, но без чего не вырасти в профессиональном плане. Нужны видеоуроки лабораторных занятий. Каждая написанная вами формула легко демонстрируется в натуре на тех или иных предметах и моделях. Желаю вам, мне и коллегам-инженерам-строителям, чтобы такие уроки появлялись и в России. Тогда образованность станет не исключением, а нормой времени.

Действительно, далеко не все формулы, приведенные в данной статье, следуют одна из другой. Но такой задачи и не было. Эти формулы есть в учебниках физики и там следует искать пошаговый их вывод. Я же просто пытался показать, что момент инерции — это не некая абстрактная величина, придуманная основателями сопромата (когда я учился, я ее примерно так и воспринимал), а вполне согласующаяся с общими физическими законами и понятиями, только и всего.

Момент инерции — есть первообразная от момента сопротивления. А что же такое момент сопротивления? А это производная от момента инерции:)
Отличная статья. Замечательно показывает материальность понятия «момент инерции». Пример с «балками-качельками» отличный!

Дмитрий, искренне рад, что статья вам понравилась.

Уважаемый Доктор, а Вы не думали выпустить свои труды в печатном виде?

Не думаю, что это будет иметь успех. К тому же труд еще не завершен, многие аспекты теории сопротивления материалов еще не нашли отражения в моих статьях (и теперь вряд ли найдут, так как сил и желания на продолжение работы у меня уже нет).

Физический смысл осевого момента инерции . ответье пожалуйста

Да я вроде целую статью посвятил объяснению осевых моментов инерции и добавить мне тут особенно нечего. Пожалуйста, перечитайте данную статью более внимательно и физический смысл вам откроется. Если нет, то обращайтесь.

Здравствуйте! Вы пишете — «При постоянной угловой скорости вращения, например w = 1» — здесь не могу разобраться, разве мы имеем право вот так выбросить величину из формулы? Ведь если постоянная угловая скорость вращения будет 0,9 (допустим град/сек), она всё равно будет постоянной? Так ведь можно и массу принять равной 1кг и выбросить из формулы.
Интуитивно я понимаю что формула m(r^2) единственно верная, но куда девать угловую скортсть если она не равна 1с-1?

Подскажите, где я ошибаюсь?

Тут такое дело, если вы посмотрите на окончательную формулу, то там вообще остались только сантиметры (или метры) в четвертой степени. Никаких килограммов или секунд. Все потому, что момент инерции — это одна из геометрических характеристик рассматриваемого поперечного сечения. Т.е. при неких постоянных значениях угловой скорости и массы на значение момента инерции влияют только расстояния от рассматриваемых точек до центра вращения. Другими словами, когда мы переходим от физических понятий вращающего момента и его реакции — момента инерции к моменту инерции — геометрической характеристике сечения, то значение угловой скорости, присутствующее в обеих частях уравнения, взаимно сокращается.
Во всяком случае я это так понимаю, никаких вразумительных статей на эту тему мне читать не приходилось. А вообще данная статья — не более чем попытка примерно пояснить смысл понятия — момент инерции, не более того.

на мой взгляд статья мутная ,ничего не проясняет а только делаются попытки.В лекциях недопустимо применять неясные термины..

Это не лекции, а как раз попытка понять, откуда берутся те или иные понятия или термины. Когда я изучал сопромат, то все ограничивалось формулировкой, приведенной в начале статьи. Многим такое заходит на ура, так как позволяет избежать мыслительного процесса и сразу переключиться на запоминание. Да и вообще для любителей классического изложения сопромата есть учебники. Зачем им читать мои статьи?
Ну а то, что вам статья не понравилась — это нормально. Я не Пушкин, не Шекспир и не профессор гарвардского университета. Это при том, что даже вышеперечисленных персонажей современные пользователи инета ругают не па-децки.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

  • Правообладателям
  • Политика конфиденциальности


🔥 Видео

Момент инерцииСкачать

Момент инерции

Момент инерции круга. Моменты инерции простых фигур. #сопроматСкачать

Момент инерции круга. Моменты инерции простых фигур. #сопромат

Моменты инерции сечения из простых фигурСкачать

Моменты инерции сечения из простых фигур

Вычисление моментов инерции составного сеченияСкачать

Вычисление моментов инерции составного сечения

2 а Моменты инерции сферы и шараСкачать

2 а  Моменты инерции сферы и шара

Моменты инерции для треугольника. Вывод моментов инерции для треугольниковСкачать

Моменты инерции для треугольника. Вывод моментов инерции для треугольников

Зависимость углового ускорения от момента инерцииСкачать

Зависимость углового ускорения от момента инерции

Техническая механика/Определение общих осевых моментов инерции сложносоставного сечения.Скачать

Техническая механика/Определение общих осевых моментов инерции сложносоставного сечения.

Момент инерции абсолютно твердого тела. 10 класс.Скачать

Момент инерции абсолютно твердого тела. 10 класс.

Сопротивление материалов. Лекция: геометрические характеристики сечений - моменты инерцииСкачать

Сопротивление материалов. Лекция: геометрические характеристики сечений - моменты инерции

Радиус инерции. Момент сопротивленияСкачать

Радиус инерции. Момент сопротивления
Поделиться или сохранить к себе:
Технарь знаток