Компьютер состоит из множества различных компонентов, это центральный процессор, память, жесткий диск, а также огромное количество дополнительных и внешних устройств, таких как экран, мышка клавиатура, подключаемые флешки и так далее. Всем этим должен управлять процессор, передавать и получать данные, отправлять сигналы, изменять состояние.
Для реализации этого взаимодействия все устройства компьютера связаны между собой и с процессором через шины. Шина — это общий путь, по которому информация передается от одного компонента к другому. В этой статье мы рассмотрим основные шины компьютера, их типы, а также для соединения каких устройств они используются и зачем это нужно.
Видео:Параллельная компрессияСкачать
Что такое шина компьютера
Как я уже сказал — шина — это устройство, которое позволяет связать между собой несколько компонентов компьютера. Но к одной шине могут быть подключены несколько устройств и у каждой шины есть свой набор слотов для подключения кабелей или карт.
Фактически, шина — это набор электрических проводов, собранных в пучок, среди них есть провода питания, а также сигнальные провода для передачи данных. Шины также могут быть сделаны не в виде внешних проводов, а вмонтированы в схему материнской платы.
По способу передачи данных шины делятся на последовательные и параллельные. Последовательные шины передают данные по одному проводнику, один бит за один раз, в параллельных шинах передача данных разделена между несколькими проводниками и поэтому можно передать большее количество данных.
Видео:2020весна ЦУиМП Параллельная шинаСкачать
Виды системных шин
Все шины компьютера можно разделить за их предназначением на несколько типов. Вот они:
- Шины данных — все шины, которые используются для передачи данных между процессором компьютера и периферией. Для передачи могут использоваться как последовательный, так и параллельный методы, можно передавать от одного до восьми бит за один раз. По размеру данных, которые можно передать за один раз такие шины делятся на 8, 16, 32 и даже 64 битные;
- Адресные шины — связаны с определенными участками процессора и позволяют записывать и читать данные из оперативной памяти;
- Шины питания — эти шины питают электричеством различные, подключенные к ним устройства;
- Шина таймера — эта шина передает системный тактовый сигнал для синхронизации периферийных устройств, подключенных к компьютеру;
- Шина расширений — позволяет подключать дополнительные компоненты, такие как звуковые или ТВ карты;
В то же время, все шины можно разделить на два типа. Это системные шины или внутренние шины компьютера, с помощью которых процессор соединяется с основными компонентами компьютера на материнской плате, такими как память. Второй вид — это шины ввода/вывода, которые предназначены для подключения различных периферийных устройств. Эти шины подключаются к системной шине через мост, который реализован в виде микросхем процессора.
Также к шинам ввода/вывода подключается шина расширений. Именно к этим шинам подключаются такие компоненты компьютера, как сетевая карта, видеокарта, звуковая карта, жесткий диск и другие и их мы более подробно рассмотрим в этой статье.
Вот наиболее распространенные типы шин в компьютере для расширений:
- ISA — Industry Standard Architecture;
- EISA — Extended Industry Standard Architecture;
- MCA — Micro Channel Architecture;
- VESA — Video Electronics Standards Association;
- PCI — Peripheral Component Interconnect;
- PCI-E — Peripheral Component Interconnect Express;
- PCMCIA — Personal Computer Memory Card Industry Association (также известна как PC bus);
- AGP — Accelerated Graphics Port;
- SCSI — Small Computer Systems Interface.
А теперь давайте более подробно разберем все эти шины персональных компьютеров.
Шина ISA
Раньше это был наиболее распространенный тип шины расширения. Он был разработан компанией IBM для использования в компьютере IBM PC-XT. Эта шина имела разрядность 8 бит. Это значит что можно было передавать 8 бит или один байт за один раз. Шина работала с тактовой частотой 4,77 МГц.
Для процессора 80286 на базе IBM PC-AT была сделана модификация конструкции шины, и теперь она могла передавать 16 бит данных за раз. Иногда 16 битную версию шины ISA называют AT.
Из других усовершенствований этой шины можно отметить использование 24 адресных линий, что позволяло адресовать 16 мегабайт памяти. Эта шина имела обратную совместимость с 8 битным вариантом, поэтому здесь можно было использовать все старые карты. Первая версия шины работала на частоте процессора — 4,77 МГц, во второй реализации частота была увеличена до 8 МГц.
Шина MCA
Компания IBM разработала эту шину в качестве замены для ISA, для компьютера PS/2, который вышел в 1987 году. Шина получила еще больше усовершенствований по сравнению с ISA. Например, была увеличена частота до 10 МГц, а это привело к увеличению скорости, а также шина могла передавать 16 или 32 бит данных за раз.
Также была добавлена технология Bus Mastering. На плате каждого расширения помещался мини-процессор, эти процессоры контролировали большую часть процессов передачи данных освобождая ресурсы основного процессора.
Одним из преимуществ этой шины было то, что подключаемые устройства имели свое программное обеспечение, а это значит что требовалось минимальное вмешательство пользователя для настройки. Шина MCA уже не поддерживала карты ISA и IBM решила брать деньги от других производителей за использование этой технологии, это сделало ее непопулярной с сейчас она нигде не используется.
Шина EISA
Эта шина была разработана группой производителей в качестве альтернативы для MCA. Шина была приспособлена для передачи данных по 32 битному каналу с возможностью доступа к 4 Гб памяти. Подобно MCA для каждой карты использовался микропроцессор, и была возможность установить драйвера с помощью диска. Но шина все еще работала на частоте 8 МГц для поддержки карт ISA.
Слоты EISA в два раза глубже чем ISA, если вставляется карта ISA, то она использует только верхний ряд разъемов, а EISA использует все разъемы. Карты EISA были дорогими и использовались обычно на серверах.
Шина VESA
Шина VESA была разработана для стандартизации способов передачи видеосигнала и решить проблему попыток каждого производителя придумать свою шину.
Читайте также: Mercedes c180 w205 шины
Шина VESA имеет 32 битный канал передачи данных и может работать на частоте 25 и 33 МГц. Она работала на той же тактовой частоте, что и центральный процессор. Но это стало проблемой, частота процессора увеличивается и должна была расти скорость видеокарт, а чем быстрее периферийные устройства, тем они дороже. Из-за этой проблемы шина VESA со временем была заменена на PCI.
Слоты VESA имели дополнительные наборы разъемов, а поэтому сами карты были крупными. Тем не менее сохранялась совместимость с ISA.
Шина PCI
Peripheral Component Interconnect (PCI) — это самая новая разработка в области шин расширений. Она является текущем стандартом для карт расширений персональных компьютеров. Intel разработала эту технологию в 1993 году для процессора Pentium. С помощью этой шины соединяется процессор с памятью и другими периферийными устройствами.
PCI поддерживает передачу 32 и 64 разрядных данных, количество передаваемых данных равно разрядности процессора, 32 битный процессор будет использовать 32 битную шину, а 64 битный — 64 битную. Работает шина на частоте 33 МГц.
В PCI можно использовать технологию Plug and Play (PnP). Все карты PCI поддерживают PnP. Это значит, что пользователь может подключить новую карту, включить компьютер и она будет автоматически распознана и настроена.
Также тут поддерживается управление шиной, есть некоторые возможности обработки данных, поэтому процессор тратит меньше времени на их обработку. Большинство PCI карт работают на напряжении 5 Вольт, но есть карты, которым нужно 3 Вольта.
Шина AGP
Необходимость передачи видео высокого качества с большой скоростью привела к разработке AGP. Accelerated Graphics Port (AGP) подключается к процессору и работает со скоростью шины процессора. Это значит, что видеосигналы будут намного быстрее передаваться на видеокарту для обработки.
AGP использует оперативную память компьютера для хранения 3D изображений. По сути, это дает видеокарте неограниченный объем видеопамяти. Чтобы ускорить передачу данных Intel разработала AGP как прямой путь передачи данных в память. Диапазон скоростей передачи — 264 Мбит до 1,5 Гбит.
PCI-Express
Это модифицированная версия стандарта PCI, которая вышла в 2002 году. Особенность этой шины в том что вместо параллельного подключения всех устройств к шине используется подключение точка-точка, между двумя устройствами. Таких подключений может быть до 16.
Это дает максимальную скорость передачи данных. Также новый стандарт поддерживает горячую замену устройств во время работы компьютера.
PC Card
Шина Personal Computer Memory Card Industry Association (PCICIA) была создана для стандартизации шин передачи данных в портативных компьютерах.
Шина SCSI
Шина SCSI была разработана М. Шугартом и стандартизирована в 1986 году. Эта шина используется для подключения различных устройств для хранения данных, таких как жесткие диски, DVD приводы и так далее, а также принтеры и сканеры. Целью этого стандарта было обеспечить единый интерфейс для управления всеми запоминающими устройствами на максимальной скорости.
Шина USB
Это стандарт внешней шины, который поддерживает скорость передачи данных до 12 Мбит/сек. Один порт USB (Universal Serial Bus) позволяет подключить до 127 периферийных устройств, таких как мыши, модемы, клавиатуры, и другие устройства USB. Также поддерживается горячее удаление и вставка оборудования. На данный момент существуют такие внешние шины компьютера USB, это USB 1.0, USB 2.0, USB 3.0, USB 3.1 и USB Type-C.
USB 1.0 был выпущен в 1996 году и поддерживал скорость передачи данных до 1,5 Мбит/сек. Стандарт USB 1.1 уже поддерживал скорость 12 Мбит/сек для таких устройств, как жесткие диски.
Более новая спецификация — USB 2.0 появилась в 2002 году. Скорость передачи данных выросла до 480 Мбит/сек, а это в 40 раз быстрее чем раньше.
USB 3.0 появился в 2008 году и поднял стандарт скорости еще выше, теперь данные могут передаваться со скоростью 5 Гбит/сек. Также было увеличено количество устройств, которые можно питать от одного порта. USB 3.1 был выпущен в 2013 и тут уже поддерживалась скорость до 10 Гбит/с. Также для этой версии был разработан компактный разъем Type-C, к которому коннектор может подключаться любой стороной.
Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать
Выводы
В этой статье мы рассмотрели основные шины компьютера, историю их развития, назначение шин компьютера, их типы и виды. Надеюсь эта статья была для вас полезной и вы узнали много нового.
На завершение небольшое видео про шины и интерфейсы компьютера:
Видео:СЕКРЕТ ПЛОТНОГО И ЖИРНОГО ЗВУКА | Вся правда о параллельной компрессииСкачать
Последовательные и параллельные шины
По способу передачи сигнала все шины можно разделить на последовательные и параллельные.
Основным отличием параллельных шин от последовательных является сам способ передачи данных. Параллельные шины можно рассматривать как совокупность сигнальных линий (можно сказать что просто проводников), объединённых по их назначению (данные, адреса, управление), которые имеют определённые электрические характеристики и протоколы передачи информации. Группы этих сигнальных линий также называются шинами:
— Линии для обмена данными (шина данных);
— Линии для адресации данных (шина адреса);
— Линии для управления данными (шина управления);
Для каждой из этих шин вводится понятие ширины. В параллельных шинах понятие «ширина шины» соответствует её разрядности – количеству сигнальных линий, или, другими словами, количеству одновременно передаваемых («выставляемых на шину») битов информации. Сигнал на каждой линии может принимать два значения 0 и 1 (линия с двумя состояниями). Сигналом для старта и завершения цикла приёма/передачи данных служит внешний синхросигнал.
Для передачи в шине может использоваться положительная логика или отрицательная логика. При положительной логике высокий уровень напряжения соответствует логической единице на соответствующей линии связи, низкий – логическому нулю. При отрицательной логике – наоборот.
На рис … показана в приближенном виде передача данных по шине шириной 8 разрядов (т.е. шина имеет 8 линий для передачи данных и одну для синхросигнала). Понятно, что за один цикл по 8-разрядной шине может передаваться один байт.
Читайте также: Шины диски колеса в шумерле
Проблема параллельных шин в том, что каждая линия такой шины имеет свою длину, свою паразитную ёмкость и индуктивность, а также взамоиндуктивность. При параллельной передаче байты мешают друг другу вследствие наличия взаимоиндуктивности, поэтому вероятность ошибок увеличивается, чем ограничивается частота шины.
Помимо линий (проводников) важным компонентом шины является контроллер шины,который осуществляет управление процессом обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхема либо интегрируется в микросхемы Chipset. Для работы контроллера шины нужен внешний синхронизирующий сигнал (тактовая частота), который вырабатывается опорным генератором.
Еще раз обсудим особенности каждой из видов шин (линий), перечисленных выше.
Шина данных – это основная шина, по которой собственно и происходит передача информации. Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена. Скорость передачи данных (она же пропускная способность) высчитывается по формуле:
скорость передачи данных = тактовая частота * разрядность * [2..4]
Полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.
Будет передано |
Синхросигнал |
Рисунок Работа параллельной шины, сигналы на линии данных |
Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях.
Шина адреса — вторая по важности шина, которая определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и, следовательно, максимально возможный размер программы и максимально возможный объем запоминаемых данных. Количество адресов, обеспечиваемых шиной адреса, определяется как N =2 I , где I, – количество разрядов. Разрядность шины адреса обычно кратна 4 и может достигать 64. Шина адреса может быть однонаправленной (когда магистралью всегда управляет только процессор) или двунаправленной (когда процессор может временно передавать управление магистралью другому устройству).
Для снижения общего количества линий связи магистрали часто применяется мультиплексирование шин адреса и данных. То есть одни и те же линии связи используются в разные моменты времени для передачи как адреса, так и данных (в начале — адрес, потом — данные). Понятно, что мультиплексированная шина адреса/данных обеспечивает меньшую скорость обмена. Иногда в шинах применяется частичное мультиплексирование, то есть часть разрядов данных передается по немультиплексированным линиям, а другая часть — по мультиплексированным с адресом линиям.
Шина управления — это вспомогательная шина, управляющие сигналы на которой обеспечивают согласование работы процессора (или другого хозяина магистрали, задатчика, master) с работой памяти или устройства ввода/вывода (устройства-исполнителя, slave).
Для успешной передачи данных не достаточно установить их на шине данных и задать адрес на шине адреса. Для того чтобы данные были записаны (считаны) в регистре устройств, подключенных к шине, адреса которых указаны на шине адреса, необходим ряд служебных сигналов: записи/считывания, готовности к приему/передачи данных, подтверждения приема данных, аппаратного прерывания, управления и др. Все эти сигналы передаются по шине управления.
Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа.
Самые главные управляющие сигналы — это стробы обмена, то есть сигналы, формируемые процессором и определяющие моменты времени, в которые производится пересылка данных по шине данных, обмен данными.
— Строб записи (вывода), который определяет момент времени, когда устройство-исполнитель может принимать данные, выставленные процессором на шину данных;
— Строб чтения (ввода), который определяет момент времени, когда устройство-исполнитель должно выдать на шину данных код данных, который будет прочитан процессором.
При этом большое значение имеет то, как процессор заканчивает обмен в пределах цикла, в какой момент он снимает свой строб обмена. Возможны два пути решения, синхронный и асинхронный обмен, (рис. ….) соответственно, шины также делятся на синхронные и асинхронные:
— При синхронном обмене процессор заканчивает обмен данными самостоятельно, через раз и навсегда установленный временной интервал выдержки (tвыд), то есть без учета интересов устройства-исполнителя;
— При асинхронном обмене процессор заканчивает обмен только тогда, когда устройство-исполнитель подтверждает выполнение операции специальным сигналом (так называемый режим handshake — рукопожатие).
Достоинства синхронного обмена – более простой протокол обмена, меньшее количество управляющих сигналов. Недостатки — отсутствие гарантии, что исполнитель выполнил требуемую операцию, а также высокие требования к быстродействию исполнителя, при синхронном обмене приходится искусственно увеличивать длительность строба обмена для соответствия требованиям большего числа исполнителей, чтобы они успевали обмениваться информацией в темпе процессора.
Рисунок Синхронный и асинхронный обмен.
Достоинства асинхронного обмена — более надежная пересылка данных, возможность работы с самыми разными по быстродействию исполнителями. Недостаток — необходимость формирования сигнала подтверждения всеми исполнителями, то есть дополнительные аппаратурные затраты.
Линии шины управления могут быть как однонаправленными, так и двунаправленными.
В последовательных шинах используется одна сигнальная линия (возможно использование двух отдельных каналов для разделения потоков приёма-передачи). Соответственно, информационные биты здесь передаются последовательно. Данные для передачи через последовательную шину облекаются в пакеты (пакет – единица информации, передаваемая как целое между двумя устройствами), в которые, помимо собственно полезных данных, включается некоторое количество служебной информации: старт-биты, заголовки пакетов, синхросигналы, биты чётности или контрольные суммы, стоп-биты и т. п.
В качестве примера приведем описание обмена для последовательного интерфейса RS-232.
Данные передаются пакетами по одному байту (8 бит). Вначале передаётся стартовый бит, противоположной полярности состоянию незанятой линии, после чего передаётся непосредственно кадр полезной информации – 8 бит. Увидев стартовый бит, приемник выжидает интервал T1 и считывает первый бит, потом через интервалы T2 считывает остальные информационные биты. Последний бит — стоповый бит, говорящий о том, что передача завершена. Очень важно, чтобы тактовые частоты приемника и передатчика были одинаковыми, допустимое расхождение — не более 10%.
Рисунок Работа последовательной шины, формат данных RS-232
Последовательные шины – не обязательно значит «однобитные», здесь возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных, то есть в пакете импульсов данные, адрес, другая служебная информация разделены на логическом уровне.
Читайте также: Всесезонная шина tigar all season 185 65r14 86h
Последовательные шины часто используют более чем два состояния линии (иногда дополнительные состояния используют для служебной информации).
Малое количество сигнальных линий и логически более сложный механизм передачи данных последовательных шин оборачиваются для них существенным преимуществом – возможностью наращивания рабочих частот. Последовательный способ передачи имеет преимущество перед параллельным если длина линии превышает хотя бы несколько сантиметров.
Поясним понятие прерывание появившееся при рассмотрении шины управления. Прерывание это сигнал, сообщающий процессору о наступлении какого-либо события, иными словами, это событие, которое говорит системе, что что-то произошло, и требует вмешательства. При этом выполнение текущей последовательности команд приостанавливается, и управление передаётся обработчику прерывания, который выполняет работу по обработке события и возвращает управление в прерванный код. Прерывание используется для быстрой реакции процессора на ситуации, о которых сообщают внешние устройства.
Для того чтобы устройство могло сообщить процессору о наступлении события, на шине управления присутствуют специальные линии прерывания – IRQ (Interrupt ReQuest — запрос прерывания). Каждое устройство, которое желает иметь возможность «обращать на себя внимание» процессора, должно быть связано с одной из линий прерывания на шине.
Когда устройство собирается оповестить процессор о наступлении какого-либо события (например, нажатии клавиши, завершении операции чтения/записи на диске, поступлении сигнала от модема, и т.п.), оно выставляет на лини прерывания шины управления сигнал, называемым запросом прерывания
Когда по одной из линий IRQ поступает сигнал (см. рис. …), процессор запоминает текущее значение счетчика команд и текущее состояние регистра флагов, после этого начинает выполняться обработчик прерываний(или процедура обслуживания прерываний) – это специальная процедура, вызываемая по прерыванию для выполнения его обработки. Когда обработчик прерываний выполнит свою работу, происходит возврат из прерывания, т.е. процессор продолжит выполнять прерванную программу (с запомненного адреса и с запомненным регистром состояния).
С каждой из линий IRQ связан адрес программы обработки называемый вектор прерывания (или адрес вектор). О местоположении векторов прерывания будет рассказано в разделе посвященном памяти.
Первое поколение процессоров использовало 8 линий прерывания, а начиная со второго 15 линий. Эти линии обозначаются как IRQ – IRQ15.
Посмотреть с какой из линий IRQ связано то или иное устройство в сиcтеме Windows можно при помощи диспетчера устройств (Рис …).
Рисунок Ресурсы устройства «последовательный порт»
Несколько устройств могут использовать одно IRQ совместно. При совместном использовании несколькими устройствами одной линии возможен конфликт прерываний. Если два устройства находятся на одной линии прерываний, то операционная система может их спутать и переслать исполняемый кусок программы не тому «железке». Например, сетевая плата и звуковая карта находятся на 10 прерывании. Сетевая карта получает пакет из локальной сети с запросом на получение файла и отправляет запрос на прерывание центральному процессору.
Процессор отрабатывает прерывание, останавливает исполняемую задачу и передает управление драйверу сетевой карты, для отработки необходимых для приемки файла действий. Драйвер начинает работу с устройством, от которого пришло прерывание. Вот только работать он начинает не с сетевой платой, а со звуковой картой, находящейся на той же линии, передавая ей команды для приемки файла. Звуковая карта пытается исполнить принятые команды, что приведет к зависанию компьютера.
Чтобы избежать такого конфликта иногда приходится переназначать прерывания для устройств вручную.
Существует еще одна небольшая тонкость. Все линии прерываний имеют свой приоритет. Чем выше приоритет у линии прерывания, тем быстрее процессор ответит на запрос от устройства находящегося на этой линии. Обслуживание прерываний с учетом приоритета означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания прекращается, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению приостановленной процедуры обработки прерывания. С другой стороны если во время выполнения процедуры обслуживания прерывания процессор получает новое прерывание с меньшим приоритетом, то это прерывание (менее приоритетное) будет обработано только после завершения текущей процедуры обработки прерывания.
Все что говорилось о прерывания выше, относилось к аппаратным прерываниям, еще раз напоминаем, что они используются для организации взаимодействия с внешними устройствами.
Помимо аппаратных существуют программные прерывания, которые вызываются следующими ситуациями:
— особый случай, возникший при выполнении команды и препятствующий нормальному продолжению программы (деление на ноль, переполнение, нарушение защиты памяти, отсутствие нужной страницы в оперативной памяти и т.п.);
— наличие в программе специальной команды прерывания, используемой обычно программистом при обращениях к специальным функциям операционной системы для ввода-вывода информации.
Прямой доступ к памяти (DMA)
До сих пор мы рассматривали шину как магистраль, обеспечивающую связь процессора со всеми остальными устройствами компьютера. Однако, возможен режим при котором обмен по шине идет без участия процессора. Такой режим обмена данными между устройствами или же между устройством и памятью (RAM), без участия процессора называется прямой доступ к памяти (Direct Memory Access, DMA). В результате скорость передачи увеличивается, так как данные не пересылаются в процессор и обратно.
В упрощенном виде использование этого режима выглядит так: Внешнее устройство, требующее обслуживания, сигнализирует процессору (для этого используется специальная линия в шине управления), что режим прямого доступа к памяти необходим, в ответ на это процессор заканчивает выполнение текущей команды и отключается от шины, сигнализируя запросившему устройству, что обмен в режиме DMA можно начинать. (Говорят, что устройство осуществило захват шины — bus mastering) Устройство, успешно осуществившее захват шины, самостоятельно выставляет на шину сигналы адреса и управления, и исполняет в течение какого-то времени ту же ведущую роль на шине, что и процессор. Доступ процессора к шине при этом кратковременно блокируется.
Когда пересылка информации будет закончена, процессор вновь возвращается к прерванной программе, продолжая ее с той точки, где его прервали.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🎦 Видео
Параллельная шина направляющая для циркулярной пилыСкачать
Что необходимо знать о направляющих шинах. Шины, шаблоны и адаптеры AMS.Скачать
Направляющая шина для дисковой пилы своими руками за несколько минутСкачать
FX-ШИНА. 3 ПРИЕМА ПАРАЛЛЕЛЬНОЙ ОБРАБОТКИСкачать
Лучшая конструкция параллельного упора из фанеры и трубыСкачать
CAN шина👏 Как это работаетСкачать
15 Параллельные и последовательные интерфейсыСкачать
Цифровые интерфейсы и протоколыСкачать
Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать
Упор параллельный направляющая для пилы и фрезераСкачать
Крутой девайс с AliExpress! Параллельный упор для циркулярной пилы.Скачать
МАСТЕР-ШИНА, МНОГОПОЛОСНАЯ КОМПРЕССИЯ и ПАРАЛЛЕЛЬНАЯ САТУРАЦИЯ (№172)Скачать
Не много про Bus "шины" и параллельную обработку в Logic Ppo X, на примере дабл трека.Скачать
Направляющая для циркулярной пилы с упором для торцевания брусков и досок.Скачать
Несколько простых приспособлений для ручной дисковой пилы. Часть 1Скачать
Почему генераторы включают в противофазе на параллель? #энерголикбезСкачать