Двигатель внутреннего сгорания и другие конструкции, в состав которых входит кривошип, характеризуются достаточно высокой сложностью. Рассматриваемый элемент конструкции характеризуется довольно большим количеством особенностей, среди которых отметим радиус. Для того чтобы понять принцип действия и многие другие параметры детали следует рассмотреть кривошип подробнее.
- Устройство КШМ
- Поршень
- Шатун
- Коленчатый вал
- Маховик
- Блок и головка блока цилиндров
- Какими параметрами определяется ход поршня
- Как определить радиус кривошипа
- Как влияет изменение радиуса кривошипа коленчатого вала на работу двигателя
- Устройство КШМ
- Поршень
- Шатун
- Коленчатый вал
- Маховик
- Блок и головка блока цилиндров
- Изменение неизменного. Продолжение. Начало в № 11/2017
- Кинематика кривошипа [ править | править код ]
- Эффект большого R/S:
- Устройство автомобиля
- Основные параметры двигателей
- Процесс смазки коленчатого вала
- Кинематика привода коленчатого вала
- Изменение длины шатуна и радиуса кривошипа
- Изменение объема камеры сжатия
- Уравновешивание масс в одноцилиндровом двигателе
- Как определить радиус кривошипа
- Понравилась статья?
- Ставь лайк и подписывайся на канал !
- 📺 Видео
Видео:Кривошипно шатунный механизм назначение устройство основные неисправностиСкачать
Устройство КШМ
Схема стандартного кривошипа представлена сочетанием различных элементов, которые и обеспечивают передачу с перенаправлением вращения. Они следующие:
- Шатун.
- Цилиндр-поршневая группа.
- Коленчатый вал.
Все эти детали расположены в двигателе в блоке цилиндров. Полезная КПД находится в обширном диапазоне, может быть достаточно большим. Рассматривая чертеж следует уделить внимание тому, что все элементы должны точно позиционироваться относительно друг друга.
Поршень
Важным элементом механизма зачастую становится поршень. Это связано с тем, что во время движения поршня создается требуемое давление. Особенностями назовем следующие моменты:
- Точность размеров повышенная. В противном случае ДВС потеряет мощность или заклинит при эксплуатации.
- При изготовлении применяются легкие сплавы, за счет чего повышается КПД.
- Материал должен выдерживать воздействие окружающей среды.
- Радиус соответствует блоку цилиндров.
Для обеспечения требуемой степени герметизации на этой детали делают несколько проточек, предназначение которых заключается в расположении герметизирующих колец.
Шатун
Еще одним важным элементом можно назвать шатун. Его предназначение заключается в связи поршня и коленвала. За счет этого обеспечивается передача механического действия. Ключевыми особенностями назовем следующее:
- Шатун выполнен в виде двутаврового изделия.
- Шатун характеризуется повышенной устойчивостью к изгибу.
- На концах, как правило, расположены головки для соединения с поршнем и коленчатом валом.
- Радиус варьирует в большом диапазоне.
В месте непосредственного контакта шатуна с коленчатым валом находится шатунная шейка. Нижняя часть выполнена в разъемном виде, за счет чего можно провести демонтаж.
Коленчатый вал
Устанавливается вал кривошипа в механизме для второго этапа преобразования энергии. За счет этого элемента есть возможность провести превращение поступательного движения поршня в возвратно-поступательное. Стоимость подобного изделия довольно высока, так как он обладает сложной геометрией. Радиус кривошипа также зависит от различных моментов. Особенности вала следующие:
- Есть два типа шеек: шатунные и коренные. Их предназначение существенно отличается, как и форма. Соединение проводится особым типом шеек.
- Фиксация проводится при помощи специальных крышек. Даже малейшее смещение может стать причиной серьезного износа.
- Для снижения степени трения устанавливаются подшипники. Выделяют довольно большое количество различны вариантов исполнения подшипников, выбор проводится в зависимости от эксплуатационных условий.
- Шатунные шейки предназначены для крепления шатуна. Они имеют относительно небольшие размеры, повторяют форму шатуна.
- Диаметр может варьировать в большом диапазоне.
При изготовлении этого элемента применяется сталь, которая характеризуется высокой устойчивостью к нагреву и механическому воздействию.
Маховик
У двигателя также есть маховик, который является важным конструктивным элементом. Сред особенностей отметим:
- Уделяется внимание правильности фиксации. Он не должен прокручиваться, так как это станет причиной повреждения вала.
- При изготовлении применяется сталь с повышенной устойчивостью к высокой температуре.
- Обладает значительным весом и габаритами, при раскручивании обеспечиваются наиболее благоприятные условия вращения коленвала.
- За счет большого веса возникают существенные проблемы при старте двигателя, так как для его раскручивания требуется высокое усилие.
- Увеличенный радиус также неблагоприятно отражается на массе изделия.
Маховик должен иметь точные размеры, так как даже незначительные отклонения могут привести к серьезным последствиям. Он устанавливается для выполнения различных функций.
Блок и головка блока цилиндров
Все детали расположены в герметичном корпусе, который называется блоком. Его размеры характеризуются высокой точностью, есть охлаждающий пояс. Для облегчения конструкции и эффективного отвода тепла применяется алюминий.
Головка блока цилиндров накрывает основную часть. Она позволяет проводить обслуживание при необходимости. При ее изготовлении также применяется металл с небольшим весом. В верхней части есть отверстия для подключения других узлов, а также отвода продуктов горения.
Видео:Mechanism for adjusting crank radius 1bСкачать
Какими параметрами определяется ход поршня
Выделяют достаточно большое количество различных признаков, по которым проводится определение хода поршня. Среди особенностей отметим:
- Радиус кривошипа.
- Частота вращения кривошипа.
Двигатель работает в несколько тактов, за счет чего обеспечивается сгорания топлива и отведение продуктов горения. Ход устройства также определяется двумя мертвыми точками.
Видео:Mechanism for adjusting crank radius 2bСкачать
Как определить радиус кривошипа
Приведенная выше информация указывает на то, что радиус кривошипа является важным параметром, который рассматривается при обслуживании и в других случаях. Определяется этот показатель расстоянием между осевой линией вращения коленчатого вала и осевой лини шатунной шейки.
Стоит учитывать, что с изменяемым радиусом кривошипа встречается относительно небольшое количество различных устройств. Этот параметр во многом определяет плавность хода, а также многие другие моменты.
В заключение отметим, что при изготовлении кривошипа применяется сталь, которая прошла дополнительную термическую обработку и другое улучшение. Самостоятельно изготовить его практически не возможно, что связано с высокой точностью размеров и сложностью обработки материала.
Видео:Уcтройство двигателя - КоленвалСкачать
Как влияет изменение радиуса кривошипа коленчатого вала на работу двигателя
Эта деталь представляет собой много раз перегнутый стержень, с расположенными на одной оси коренными шейками. Коленчатый вал это вал
Видео:Кривошипно-шатунный механизм (КШМ).Скачать
Устройство КШМ
Схема стандартного кривошипа представлена сочетанием различных элементов, которые и обеспечивают передачу с перенаправлением вращения. Они следующие:
- Шатун.
- Цилиндр-поршневая группа.
- Коленчатый вал.
Все эти детали расположены в двигателе в блоке цилиндров. Полезная КПД находится в обширном диапазоне, может быть достаточно большим. Рассматривая чертеж следует уделить внимание тому, что все элементы должны точно позиционироваться относительно друг друга.
Поршень
Важным элементом механизма зачастую становится поршень. Это связано с тем, что во время движения поршня создается требуемое давление. Особенностями назовем следующие моменты:
- Точность размеров повышенная. В противном случае ДВС потеряет мощность или заклинит при эксплуатации.
- При изготовлении применяются легкие сплавы, за счет чего повышается КПД.
- Материал должен выдерживать воздействие окружающей среды.
- Радиус соответствует блоку цилиндров.
Читайте также: Резинового вала для hp m1005
Для обеспечения требуемой степени герметизации на этой детали делают несколько проточек, предназначение которых заключается в расположении герметизирующих колец.
Шатун
Еще одним важным элементом можно назвать шатун. Его предназначение заключается в связи поршня и коленвала. За счет этого обеспечивается передача механического действия. Ключевыми особенностями назовем следующее:
- Шатун выполнен в виде двутаврового изделия.
- Шатун характеризуется повышенной устойчивостью к изгибу.
- На концах, как правило, расположены головки для соединения с поршнем и коленчатом валом.
- Радиус варьирует в большом диапазоне.
В месте непосредственного контакта шатуна с коленчатым валом находится шатунная шейка. Нижняя часть выполнена в разъемном виде, за счет чего можно провести демонтаж.
Коленчатый вал
Устанавливается вал кривошипа в механизме для второго этапа преобразования энергии. За счет этого элемента есть возможность провести превращение поступательного движения поршня в возвратно-поступательное. Стоимость подобного изделия довольно высока, так как он обладает сложной геометрией. Радиус кривошипа также зависит от различных моментов. Особенности вала следующие:
- Есть два типа шеек: шатунные и коренные. Их предназначение существенно отличается, как и форма. Соединение проводится особым типом шеек.
- Фиксация проводится при помощи специальных крышек. Даже малейшее смещение может стать причиной серьезного износа.
- Для снижения степени трения устанавливаются подшипники. Выделяют довольно большое количество различны вариантов исполнения подшипников, выбор проводится в зависимости от эксплуатационных условий.
- Шатунные шейки предназначены для крепления шатуна. Они имеют относительно небольшие размеры, повторяют форму шатуна.
- Диаметр может варьировать в большом диапазоне.
При изготовлении этого элемента применяется сталь, которая характеризуется высокой устойчивостью к нагреву и механическому воздействию.
Маховик
У двигателя также есть маховик, который является важным конструктивным элементом. Сред особенностей отметим:
- Уделяется внимание правильности фиксации. Он не должен прокручиваться, так как это станет причиной повреждения вала.
- При изготовлении применяется сталь с повышенной устойчивостью к высокой температуре.
- Обладает значительным весом и габаритами, при раскручивании обеспечиваются наиболее благоприятные условия вращения коленвала.
- За счет большого веса возникают существенные проблемы при старте двигателя, так как для его раскручивания требуется высокое усилие.
- Увеличенный радиус также неблагоприятно отражается на массе изделия.
Маховик должен иметь точные размеры, так как даже незначительные отклонения могут привести к серьезным последствиям. Он устанавливается для выполнения различных функций.
Блок и головка блока цилиндров
Все детали расположены в герметичном корпусе, который называется блоком. Его размеры характеризуются высокой точностью, есть охлаждающий пояс. Для облегчения конструкции и эффективного отвода тепла применяется алюминий.
Головка блока цилиндров накрывает основную часть. Она позволяет проводить обслуживание при необходимости. При ее изготовлении также применяется металл с небольшим весом. В верхней части есть отверстия для подключения других узлов, а также отвода продуктов горения.
Видео:Equivalency of circular cam and linkage mechanisms 2Скачать
Изменение неизменного. Продолжение. Начало в № 11/2017
Итак, мы остановились на том, что американская корпорация Continental на протяжении ряда лет выпускала дизель специального назначения AVCR-1100 с регулируемой высотой поршней. Степень сжатия в нем изменялась в пределах от 10 до 22. Увеличение высоты поршня от минимума до максимума происходило за 60–65 циклов или примерно за 3 с, потому что оно возможно лишь в течение небольшого периода времени, пока действующие на поршень силы инерции превышают силу противодавления газов. Низкое быстродействие – не самый значительный недостаток конструкций с телескопическими поршнями. Механизм с прецизионными элементами вынужден работать в условиях больших температур и нагрузок. Одно из вероятных следствий этого – коксование масла и потеря подвижности головки поршня. К тому же реализация способа связана с существенным увеличением массы поршней со всеми вытекающими последствиями.
Видео:Ремонт коленвала двигателя. Шлифовка коленвала на станке AMC-SCHOU (K1500-U)Скачать
Кинематика кривошипа [ править | править код ]
При рассмотрении кривошипа в качестве входного звена механизмов, независимой переменной является угол поворота кривошипа φ. Его движение может быть как односторонним, так и реверсивным.
Из геометрических параметров выделяют радиус кривошипа r. В центральном кривошипно-шатунном механизме он находится в простейшем кинематическом соотношении с ходом поршня (ползуна):
Видео:А вы знали как делают коленвал ? Изготовление коленвала в ГерманииСкачать
Эффект большого R/S:
ЗА: Позволяет поршню дольше находиться в ВМТ, что обеспечивает лучшее горение топливной смеси, т.е. более полное сгорание топливной смеси, более высокое давление на поршень после прохождения ВМТ, более высокая температура в камере сгорания. В результате хороший момент на средних и высоких оборотах. Длинный шатун уменьшает трение пары «поршень-цилиндр», а это особенно важно при рабочем ходе поршня.
ПРОТИВ: Мотор, собранный с достаточно большим значением R/S не обеспечивает хорошее наполнение цилиндров на низких и средних частотах вращения КВ, из-за снижения скорости воздушного потока (из-за уменьшения скорости движения поршня после ВМТ, в момент открытия впускного клапана). Большая вероятность появления детонации из-за высокой температуры в камере сгорания и длительного времени нахождения поршня в ВМТ.
Видео:ОГРОМНЫЕ КОЛЕНВАЛЫ ПРОИЗВОДСТВО ГЕРМАНИЯ HUGE CRANKSHAFTS MANUFACTURED IN GERMANYСкачать
Устройство автомобиля
Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем:
- кривошипно-шатунный механизм (КШМ);
- газораспределительный механизм (ГРМ);
- система охлаждения;
- смазочная система;
- система питания;
- система зажигания (в карбюраторном двигателе);
- система электрического пуска двигателя.
В поршневом ДВС (рис. 1) преобразование энергии происходит в замкнутом объеме, который образован цилиндром, крышкой (головкой) цилиндра и поршнем. В карбюраторном двигателе горючая смесь вводится в цилиндр через впускной клапан, смешиваясь с остатками отработавших газов — образует рабочую смесь, которая сжимается поршнем и воспламеняется. Образовавшиеся при сгорании газы перемещают поршень, который через шатун передает усилие на кривошип коленчатого вала, поворачивая его вокруг оси. Отработавшие газы вытесняются при обратном движении поршня через выпускной клапан. Таким образом, тепловая энергия преобразуется в механическую, а возвратно-поступательное движение — во вращательное как наиболее удобный для трансформации вид движения.
Читайте также: Подшипники условия прочности вала
Рис. 1.
Схема четырехтактного одноцилиндрового карбюраторного двигателя:
1 — распределительный вал; 2 — толкатель; 3 — цилиндр; 4 — поршень; 5 — штанга; 6 — впускной клапан; 7 — коромысло; 8 — свеча зажигания; 9 — выпускной клапан; 10 — поршневые кольца; 11 — шатун; 12 — коленчатый вал; 13 — поддон
При вращении коленчатого вала поршень дважды за один оборот останавливается и меняет направление движения.
Основные параметры двигателей
Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня (рис. 2).
Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки.
Ход поршня S — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).
Рис. 2.
Основные положения кривошипно-шатунного механизма:
а — ВМТ; б — НМТ; Vc — объем камеры сгорания; Vh — рабочий объем цилиндра; D — диаметр цилиндра; S — ход поршня
Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя.
Такт — часть рабочего цикла, происходящая за один ход поршня.
Объем камеры сгорания — объем пространства над поршнем при его положении в ВМТ.
Рабочий объем цилиндра объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ.
Полный объем цилиндра — объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем цилиндра равен сумме рабочего объема цилиндра и объема камеры сгорания.
Степень сжатия ε — отношение полного объема цилиндра к объему камеры сгорания.
Индикаторная мощность Ni, мощность, развиваемая газами в цилиндре.
Эффективная (действительная) мощность Ne — мощность, развиваемая на коленчатом валу двигателя. Эффективная мощность Ne меньше индикаторной Ni, так как часть последней затрачивается на трение и на приведение в движение вспомогательных механизмов. Эта мощность называется мощностью механических потерь Nм.
Механический КПД (коэффициент полезного действия) двигателя ηм — отношение эффективной мощности к индикаторной:
Индикаторный КПД ηi, представляет собой отношение теплоты Qi эквивалентной индикаторной работе, ко всей теплоте Q, введенной в двигатель с топливом.
Эффективный КПД ηе — отношение количества теплоты Q2, превращенного в механическую работу на валу двигателя, ко всему количеству теплоты Q1, подведенному в процессе работы.
Среднее эффективное давление ре — произведение среднего индикаторного давления рi (давление, действующее на поршень в течение одного хода поршня) на механический КПД ηм.
Удельный индикаторный расход топлива qi — количество топлива, расходуемого в двигателе для получения в течение 1 ч индикаторной мощности 1 кВт.
Удельный эффективный расход топлива ge — количество топлива, которое расходуется в двигателе для получения в течение 1 ч 1 кВт эффективной мощности.
Видео:Application of rack pinion mechanism 6Скачать
Процесс смазки коленчатого вала
Смазка коленвала обеспечивается за счет шатунных и коренных шеек. Важно помнить, что смазка коленчатого вала всегда происходит под давлением. Каждая коренная шейка обеспечена индивидуальным подводом масла от общей смазочной системы. Поступившее масло попадает на шатунные шейки по специальным каналам, расположенным в коренных шейках.
Видео:Rotary key clutchСкачать
Кинематика привода коленчатого вала
Кинематика привода коленчатого вала (для одного цилиндра) может быть определена из геометрического расположения осей поршня и поршневого пальца, шатуна и коленчатого вала (радиус коленчатого вала равен половине рабочего хода поршня) (см. рис. «Кривошипно-шатунный механизм поршневого двигателя» ).
Если ход поршня х в верхней мертвой точке принять равным нулю, при радиусе кривошипа r и длине шатуна l получаем (см. рис. «Разложение на составляющие силы воздействующей на поршень» ):
х = r ( 1 — cosa) + l (1 — cosβ),
x = r (1 — cosa + 1/λ (1- √‾1-λ2·sin 2a))
Некоторые производители применяют компоновку со смещенным поршневым пальцем. За счет изменения положения поршня и в зависимости от положения шатуна можно ожидать снижения трения и уровня шума. Смещение может осуществляться путем сдвига поршневого пальца относительно центрального положения или смещения коленчатого вала.
Если принять смещение для положительных углов поворота коленчатого вала положительным и ввести величину
δ = смещение / длина шатуна
это дает следующее соотношение для хода поршня:
x=r (1 — cosa + 1/λ (1- √‾1-(λ·sina-δ)2).
На рис. «График зависимости положения поршня от угла поворота коленчатого вала» показано влияние отношения хода поршня к длине шатуна и смещения. Однако различия по сравнению с нормальными значениями смещения в миллиметровом диапазоне (δ х = r(1+1/4·λ+3/64·λ3+…- cosa-(1/4λ+3/64·λ3+…)cos2a+(3/64·λ3+…)cos4a+…)
Это выражение демонстрирует присутствие высших гармоник, обусловленных кинематикой привода коленчатого вала, которые также называются колебаниями двигателя высшего порядка (кратные частоты вращения коленчатого вала).
Поскольку нормальные значения λ составляют около 0,3, членами λ высшего порядка можно пренебречь и в дальнейших расчетах использовать следующее упрощенное выражение:
х = r( 1 + 1/4λ — cosа — 1/4λ · cos2а) .
Однако это упрощение не может быть использовано, если необходимо выполнить детальный анализ вибрации и резонанса.
Из упрощенного уравнения получаются следующие соотношения для скорости поршня v и ускорения поршня а, где была введена угловая скорость da/dt=ω= 2πn (п частота вращения):
Здесь также имеют место высшие гармоники, которые не следует игнорировать при исследовании явлений резонанса.
Видео:1705 Mechanism for adjusting crank radius 2bСкачать
Изменение длины шатуна и радиуса кривошипа
В разное время было предложено большое количество конструкций шатунов с изменяемой длиной. Большая часть из них основывалась на тех же решениях, что применялись для изменения высоты поршней. Тело шатуна изготавливалось телескопическим, его длина изменялась с помощью механических или гидравлических устройств. Таким конструкциям свойственны те же недостатки, что и телескопическим поршням. Более того, надежность конструкции оказывалась еще ниже из-за того, что шатун, в отличие от поршня, подвержен большим изгибающим нагрузкам. В нескольких патентах предлагалось изменять длину шатуна путем размещения эксцентриковых элементов в верхней или нижней головках. Практическая реализация этих способов оказалась настолько сложной, что они так и остались чистыми идеями.
Читайте также: Компрессор sd 5s14 a2 12v fl 6626s
Применение эксцентрикового механизма также рассматривалось в качестве средства для изменения радиуса кривошипа. В этом направлении дальше всех продвинулась голландская инжиниринговая фирма Gomecsys. В предложенной ею конструкции вокруг шатунной шейки размещается подвижная эксцентриковая втулка с зубчатым венцом. Ее угловое положение изменяется за счет поворота ответной зубчатой шестерни большого диаметра с внутренним зацеплением. По такому принципу построены и исследуются 2- и 4-цилиндровый моторы – прототипы GoEngine. Разработанный механизм одновременно обслуживают два цилиндра. Поэтому он подходит только для двигателей с определенной схемой – четным числом цилиндров, из которых два соседние работают синхронно. В других случаях количество зубчатых пар, масса и габариты двигателя возрастают чрезмерно. Одно это уже значительно сужает возможности его практического применения.
Видео:Simplest Slider Crank Mechanism #mechanical #mechanism #3ddesign #solidworks #cad #fusion360Скачать
Изменение объема камеры сжатия
Альтернативные способы изменения объема камеры сжатия главным образом сводятся к устройству разделенной камеры, состоящей из двух сообщающихся частей – основной и дополнительной. Объем дополнительной камеры варьируется перемещением ее свода, которое осуществляется гидравлическими, механическими или электрическими устройствами. При этом изменяется суммарный объем камеры сгорания и соответственно степень сжатия.
Одной из первых подобную систему освоила французская фирма Hispano-Suiza. В авиационном дизельном двигателе V8 модели HS-103 применяли вихревую камеру переменного объема, подвижный свод которой перемещался под действием гидравлики. Похожее устройство регулирования степени сжатия в искровом двигателе было запатентовано концерном Ford. Отличие состояло в том, что в этой конструкции подвижная часть дополнительной камеры перемещалась при помощи профилированного кулачка. Наконец, по этому же принципу варьировалась степень сжатия в концепт-двигателе ALVAR, авторство которого принадлежит концерну Volvo. Здесь сводами дополнительных камер сжатия служили днища небольших вторичных поршней, которые приводились в действие от вала, расположенного в ГБЦ.
Способ разделения камеры сжатия привлекателен тем, что необходимые изменения ограничиваются только конструкцией головки. С другой стороны, ГБЦ (особенно современного многоклапанного двигателя) и без того достаточно плотно «упакована». Так что размещение в ней дополнительного элемента представляет большую проблему. Наличие «аппендикса» в камере сгорания неизбежно нарушает процесс смесеобразования и сгорания, что приводит к ухудшению экологических характеристик мотора. Наконец, регулирующий механизм работает в зоне максимальных тепловых и механических нагрузок, что не может не сказаться на его надежности.
На этом этапе можно сделать некоторые промежуточные выводы. Они, к сожалению, не очень утешительны. Для двигателей с традиционным КШМ были предложены и в различной степени опробованы всевозможные варианты регулирования степени сжатия. Большинство из них позволяло решить поставленную задачу по изменению ε, но ни один не оказался безусловно предпочтительным и пригодным для широкого применения на серийных моторах из-за трудностей в изготовлении или обеспечении приемлемой работоспособности. Это побудило инженеров-двигателистов вспомнить о других типах механизмов, преобразующих поступательное движение во вращение.
Видео:Slider-crank mechanism for adjusting stroke position 1Скачать
Уравновешивание масс в одноцилиндровом двигателе
Компонент вращающейся массы в одноцилиндровом двигателе может быть полностью уравновешен при помощи соответствующего противовеса. Противовесы обычно предусматриваются на обеих сторонах, и массы должны быть сбалансированы относительно радиуса вращения центра масс. Колебания сил можно представить в виде векторов силы (рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ), когда они моделируются как вращающиеся в противоположных направлениях, и имеющие в каждом случае половинную величину.
Следовательно, для уравновешивания колебательных сил инерции могут быть использованы два вращающихся в противоположном направлении вала. Горизонтальная составляющая исчезает и, как минимум составляющая колебательной силы инерции первого порядка может быть скомпенсирована.
Для практически полного уравновешивания масс требуются дополнительные уравновешивающие валы, которые должны вращаться со скоростью в два раза выше частоты вращения двигателя, чтобы полностью уравновесить составляющую колебаний второго порядка.
Часто конструкторам приходится идти на компромисс вследствие того, что системы с противоположно вращающимися валами являются дорогостоящими, и уже для уравновешивания сил инерции первого порядка требуются значительные массы. Например, масса противовеса может быть равна половине колеблющейся массы. При этом неуравновешенные силы инерции, действующие наружу в направлении продольной оси цилиндра, уменьшаются наполовину, однако за счет больших масс, вращающихся компонентов возникают поперечные силы (см. табл. «Уравновешивание масс в одноцилиндровом двигателе, в зависимости от степени уравновешивания» ). Такая частичная компенсация называется 50% — ной балансировкой. Обычными цифрами являются 100% уравновешивание вращающихся масс и 50% уравновешивание колеблющихся масс.
Видео:1983 Mechanism for adjusting crank radius 2aСкачать
Как определить радиус кривошипа
Приведенная выше информация указывает на то, что радиус кривошипа является важным параметром, который рассматривается при обслуживании и в других случаях. Определяется этот показатель расстоянием между осевой линией вращения коленчатого вала и осевой лини шатунной шейки.
Стоит учитывать, что с изменяемым радиусом кривошипа встречается относительно небольшое количество различных устройств. Этот параметр во многом определяет плавность хода, а также многие другие моменты.
В заключение отметим, что при изготовлении кривошипа применяется сталь, которая прошла дополнительную термическую обработку и другое улучшение. Самостоятельно изготовить его практически не возможно, что связано с высокой точностью размеров и сложностью обработки материала.
Видео:Geneva mechanism 17Скачать
Понравилась статья?
Ставь лайк и подписывайся на канал !
Так ты будешь получать больше интересной и полезной информации.
📺 Видео
Equivalency of circular cam and linkage mechanisms 3Скачать
Кривошипно ползунный механизм[The crank slider mechanism]Скачать
Regulatable slider-crank mechanism with satellite gear 2Скачать
Which will you choose 🤔 | Mechanical MechanismСкачать