Что такое разрядность шины данных процессора

Разрядность процессора параметр более сложный. В процессор входят три важных устройства, основной характеристикой которых является разрядность:

  1. Шина ввода и вывода данных
  2. Шина адреса памяти
  3. Внутренние регистры

Шина данных

Шина данных – передняя шина (Front Site Bus), Внутренняя шина (Processor Site Bus). Этими терминами называют шину, соединяющую процессор с системной платой. Чем выше разрядность шины, тем быстрее процессор может обмениваться информацией.

Все современные процессоры имеют 64 разрядную шину данных, однако это не делает процессоры действительно 64-разрядными. Р4 и Athlon XP, являются 32-разрядными из-за наличия внутренних регистров с разрядностью 32. Процессоры Itanium, Opteron, Athlon 64 являются 64-разрядными процессорами, поскольку имеют также 64 разрядные внутренние регистры

Шина данных связывает процессор с системной платой. Чем больше сигналов одновременно поступают на шину, тем больше данных передаются по ней за определённый интервал времени и тем быстрее она работает. Разрядность шины подобна количеству полос движения на скоростной автомагистрали. Представьте себе, что шина – это автомагистраль с движущимися по ней автомобилями. Если магистраль имеет всего по одной полосе движения в каждую сторону, то по ней в одном направлении в определённый момент времени может проехать только одна машина. Если Вы хотите увеличить пропускную способность дороги, например, вдвое, Вам придётся её расширить, добавив ещё по одной полосе движения в каждом направлении. Таким образом 8-разрядную микросхему можно представить в виде однополосной автомагистрали, так как в каждый момент времени по ней проходит только 1 байт. 32-разряда – 4 байта. 64-разрядная шина подобна 8-полосной автомагистрали.

Шина адреса

Представляет собой набор проводников, по ним передаётся адрес ячейки памяти, в которую или из которой пересылаются данные. Как и в шине данных по каждому проводнику передаётся один бит адреса, соответствующий одной цифре в адресе. Увеличение разрядности шины адреса позволяет увеличить количество адресуемых ячеек. Разрядность шины адреса определяет максимальный объём памяти, адресуемой процессором. Шину можно ассоциировать с нумерацией домов на улице. Количество разрядов в шине эквивалентно количеству цифр в номере дома. Например, 2 цифры – не более 100 домов на улице. Три цифры – не более тысячи домов. В компьютере применяется двоичная система счисления поэтому при друхразрядной адресации можно выбрать четыре ячейки (2 2 ) – 00, 01, 10, 11. При трёхразрядной – 2 3 = 8. Например, в процессорах 8086 и 8088 использовалась 20-разрядная шина адреса, поэтому они могут адресовать 2 20 б=1048576 б=1Мб.

В общем разрядность шины и адреса независимы и определяются разработчиком. Первая определяет скорость обмена данными между процессором и другими устройствами, то вторая определяет объём памяти, с которым может работать процессор.

Дата добавления: 2016-04-06 ; просмотров: 732 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Шина данных. разрядность шины

Шину данных образуют линии, служащие для передачи данных между отдельными структурными группами ПК. Исходным пунктом линий данных является центральный процессор. Он определяет разрядность шины данных, т.е. число линий, по которым передаются данные. Чем выше разрядность шины данных, тем больший объем данных можно передать по ней за некоторый определенный промежуток времени и тем выше быстродействие компьютера.

В первых ПК использовался процессор Intel 8088. Этот 16-разрядный процессор имел всего лишь 8 внешних линий данных (этим объясняется его низкая стоимость). Для внутренних операций было задействовано 16 линий данных, благодаря чему процессор мог одновременно обрабатывать два восьмиразрядных числа. Но на внешнем уровне к нему присоединялась дешевая восьмиразрядная шина данных. Эти 8 линий обеспечивали связь со всеми микросхемами на системной плате, выполняющими функции обработки данных, и всеми платами расширения, установленными в гнездах. Таким образом осуществлялась передача данных между платами расширения и процессором.

Современные процессоры допускают внешнее подключение большего числа линий данных: процессор 80286 — 16 линий данных, процессоры 80386 DX и 80486 DX — 32 линии, а процессор Pentium — 64 линии данных.

Адресная шина. Разрядность шины

Другая группа линий образует адресную шину. Эта шина используется для адресации. Каждая ячейка памяти и устройство ввода-вывода компьютера имеет свой собственный адрес.

При считывании или записи данных процессор должен сообщать, по какому адресу он желает прочитать или записать данные, для чего необходимо указать этот адрес.

Читайте также: Марка резины для шин где посмотреть

В отличие от шины данных шина адреса является однонаправленной.

Разрядность адресной шины определяет максимальное число адресов, по которым может обратиться процессор, т. е. число линий в адресной шине показывает, каким объемом памяти может управлять процессор. Учитывая, что одна адресная линия обеспечивает представление одного разряда двоичного числа, формулу для максимального объема адресуемой памяти можно записать в следующем виде:

максимальное число адресов = 2n,

где n — разрядность адресной шины.

Процессор 8088 имел 20 адресных линий, что в соответствии с приведенной формулой обеспечивало адресацию памяти объемом:

220 =1 048 576 байт = 1024 Кбайт = 1 Мбайт.

Это тот самый предельный объем памяти, который все еще имеет силу в операционной системе DOS.

Совсем иная ситуация с процессором 80286. Он имеет 24 адресных линии и поэтому в состоянии управлять памятью объемом:

224= 16 777 216 байт =16 Мбайт.

Для обеспечения связи с микросхемами памяти число адресных линий процессора должно равняться числу адресных линий на системной плате.

Процессоры 80386, 80486 и Pentium имеют 32 адресных линии, что обеспечивает адресацию свыше 4 млрд. ячеек памяти. На системной плате с такими процессорами должно быть 32 линии, обеспечивающие обмен адресами между центральным процессором и всеми важными периферийными микросхемами.

Линии шины управления на системной плате служат для управления различными компонентами ПК. По выполняемой ими функции их можно сравнить с переводной стрелкой на железнодорожных путях.

С помощью небольшого числа линий шина управления обеспечивает такое функционирование системы, чтобы в каждый данный момент времени только одна структурная единица ПК пересылала данные по шине данных или осуществляла адресацию памяти.

К шине может быть подключено много приемных устройств. Сочетание управляющих и адресных сигналов определяет, для кого именно предназначаются данные на шине. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные.

Управляющая логика активизирует в каждый конкретный момент только одно устройство, которое становиться ведущим. Когда устройство активизировано, оно помещает свои данные на шину. Все другие микросхемы в этот промежуток времени должны блокироваться с помощью соответствующего сигнала на линии управления.

Микропроцессор взаимодействует с внешней средой с помощью шины адреса/данных/состояния и нескольких управляющих сигналов. Собственно взаимодействие заключается в выполнении одной из двух операций: МП либо выводит (записывает) данные, либо вводит (считывает) данные или команды. В каждой из этих операций процессор должен указывать то устройство, с которым он будет взаимодействовать; другими словами, процессор должен адресовать ячейку памяти либо порт ввода или вывода.

Для передачи данных или выборки команды процессор инициирует так называемый цикл шины. Кроме процессора, цикл шины могут инициировать и другие устройства, например, арифметический сопроцессор.

Цикл шины представляет собой последовательность событий, в течение которой процессор выдает адрес ячейки памяти или периферийного устройства, а затем формирует сигнал записи или считывания, а также выдает данные в операции записи. Выбранное устройство воспринимает данные с шины в цикле записи или помещает данные на шину в цикле считывания. По окончании цикла шины устройство фиксирует записываемые данные или снимает считываемые данные.

Рассмотрим цикл шины микропроцессора 8086, который имеет совмещенную 20-разрядную шину адреса/данных/состояния и шину управления (рис. 4).

Рис. 4. Шины микропроцессора 8086

Цикл шины микропроцессора 8086 состоит минимум из четырех тактов синхронизации, называемых также состояниями T, которые идентифицируются спадающим фронтом сигнала синхронизации CLC. В первом такте (T1) процессор выдает на шину адреса/данных/состояния AD20-AD0 адрес устройства, которое будет источником или получателем информации в текущем цикле шины. Во втором такте (T2) процессор снимает адрес с шины и либо переводит тристабильные буферы линий AD15-AD0 в высокоимпедансное состояние, подготавливая их к выводу информации в цикле считывания, либо выдает на них данные в цикле записи.

Управляющие сигналы, инициирующие считывание, запись или подтверждение прерываний, всегда выдаются в такте T2. В максимальной конфигурации системы сигнал записи формируется в такте T3, чтобы гарантировать стабилизацию сигналов данных до начала действия этого сигнала.

Читайте также: Шины для мокрой травы

В такте T2 старшие четыре линии адреса/состояния переключаются с режима выдачи адреса на режим выдачи состояния. Сигналы состояния предназначены в основном для диагностических целей, например, идентифицируют сегментный регистр, который участвует в формировании адреса памяти.

В течение такта T3 процессор сохраняет информацию на линиях состояния. На шине данных в цикле записи сохраняются выводимые данные, а в цикле считывания производится опрос вводимых данных.

Тактом T4 заканчивается цикл шины. В этом такте снимаются все управляющие сигналы и выбранное устройство отключается от шины.

Таким образом, цикл шины для памяти или периферийного устройства представляет собой асинхронное действие. Устройство может управлять циклом шины только путем введения состояний ожидания.

Процессор выполняет цикл шины в том случае, когда ему необходимо осуществить запись или считывание информации. Если циклы шины не требуются, шинный интерфейс реализует холостые состояния Ti, в течение которых процессор сохраняет на линиях состояния сигналы состояния от предыдущего цикла шины.

Статьи к прочтению:

Как выбрать видеокарту. Или почему шина 256 бит — не рулит. (см. описание)

Похожие статьи:

Современные устройства радиоэлектронной техники используют большое число микросхем, что требует много линий для адресации, выбора и управления их…

Шины микропроцессорной системы и циклы обмена Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена…

Видео:КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ

Шины в микропроцессорной системе

В предыдущей главе я рассказывал про цифровую электронику и общее устройство микроконтроллера (МК). А также, что он состоит из процессора, устройств ввода-вывода (УВВ) и устройства памяти. Но я практически ничего не сказал о том, как они общаются между собой. А это весьма важная тема, в которую я и посвящу тебя в этот раз.

Видео:Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать

Влияние шин PCI-e и внутренней шины видеокарты на производительность

Шины и разряды

Как ты уже знаешь, вся информация в цифровой технике стараниями инженеров и математиков представляется в виде двоичных чисел, которые записываются с помощью всего двух цифр: «0» и «1». Обычное десятичное число «3» в двоичной записи будет выглядеть как «11», т.е. 310 = 112. Нижние индексы указывают в какой системе счисления записано число, т.е. 10 – десятичная, а 2 – двоичная. Одна цифра в двоичном числе называется разрядом. У разрядов есть старшинство. Самый правый разряд называется младшим, а самый левый – старшим. Старшинство разряда растет справа налево:

Что такое разрядность шины данных процессора

Двоичное число, состоящее из 8 разрядов называется 8-ми разрядным, из 16 – шестнадцатиразрядным и т.д. Разрядность двоичного числа имеет самое прямое отношение к взаимодействию между процессором, памятью и устройствами ввода-вывода.

Дело в том, что в твоем МК бегают такие же двоичные числа. Они ходят от памяти к процессору, от процессора назад к памяти или УВВ, а от последних к процессору. Бегают они естественно по проводам (в МК эти шины спрятаны внутри микросхемы). Каждый провод в определённый момент времени может передавать только один разряд со значением «0» или «1». Поэтому, чтобы передать, к примеру, 8-ми разрядное число от процессора к памяти или назад понадобится минимум 8 таких поводов.

Несколько таких проводов, объединенных вместе называются шиной. Шины бывают нескольких видов: шина адреса, шина данных и шина управления. По шине адреса бегают числа, которые обозначают адрес ячейки памяти или устройства ввода-вывода, откуда ты хочешь получить или куда хочешь записать данные. А сами данные будут передаваться уже по шине данных. Это похоже на почтовую посылку. У посылки есть адрес и есть содержание. Так вот в микропроцессорной системе, каковой МК также является, адрес и данные передаются по разным путям, именуемым шинами.

Сколько проводов должно быть в шине?

Это напрямую зависит от конструкции процессора. Процессор может иметь 32-разрядную шину данных и 16-ти разрядное АЛУ. Такие случаи в истории процессоров и МК встречаются многократно. Поэтому разрядность процессора не определяет 100% разрядность шин данных и шин адреса. Всё зависит от конкретной конструкции.

На что влияет разрядность шины адреса

Самым главным, на что она влияет, является количество адресов, которые можно по ней передавать. Например, в 4-разрядной системе это будет всего 2 4 = 16 адресов, в 64-разрядной числов сдресов будет уже 2 64 =18 446 744 073 709 551 616. Таким образом, чем выше разрядность шины адреса, тем к больше объем памяти и больше устройств ввода-вывода, с которыми может работать процессор. Это важно.

Читайте также: Шина lin принцип работы

На что влияет разрядность шины данных

Её разрядность определяет сколько данных процессор может считать за один раз. Чем выше разрядность, тем больше данных можно считывать за один раз. Её разрядность, как и разрядность шины адреса целиком определяется конструкцией конкретного процессора или МК. Но при этом всегда кратна восьми. Связано это с тем, что практически во всех устройствах памяти минимальной единицей информации является байт, т.е. двоичное число из 8-ми разрядов.

Зачем было нужно вводить ещё одно название: байт? Оно служит для обозначения количества информации. Если количество разрядов говорит просто о длине двоичного числа, то битность говорит о количестве информации, которую это число несет. Считается, что один разряд двоичного числа может передавать 1 бит информации. При этом биты группируются в байты, килобайты, мегабайты, гигабайты, терабайты и т.д.

Кстати, 1 байт = 8 бит, 1 килобайт = 1024 байтам, 1 мегабайт = 1024 килобайтам и т.д. Почему именно 1024? Все это связано с тем, что размер памяти всегда кратен степени двойки: 2 3 = 8, 2 10 =1024. В свою очередь кратность двойке была выбрана благодаря тому, что она упрощает техническую реализацию устройств памяти. Устройство памяти представляет.

Видео:Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать

Виды видеопамяти и сколько её нужно? Какая нужна шина?

Алгоритм работы микроконтроллера

Давай теперь попробуем посмотреть как взаимодействует процессор с памятью и разберёмся зачем нужна шина управления. Любой процессор помимо выполнения арифметических и логических команд умеет делать ещё несколько важных операций: чтение из ячейки памяти, запись в ячейку памяти, чтение из порта ВВ, запись в порт ВВ:

  • чтение из ячейки памяти
  • запись в ячейку памяти
  • чтение из порта ВВ
  • запись в порта ВВ

Для того, чтобы указывать какую из этих операций производить используется шина управления. По этой шине от процессора к памяти или портам ввода-вывода передаются сигналы:

RD (read)сигнал на чтение
WR (write)сигнал на запись
MREQ (memory request)запрос обращения к памяти
IORQ (input/output request)запрос обращения к портам в/в
READYсигнал готовности
RESETсигнал сброса

Когда процессору требуется обратиться к памяти он выставляет на шине управления сигнал MREQ, при этом будет выставлен одновременно с ним сигнал RD/WR. Если процессор будет писать в память, то выставляется сигнал WR, если чтение – RD. Тоже самое происходит, если процессор обращается к портам ввода-вывода.

А вот сигнал READY нужен для того, чтобы сообщить процессору, что чтение/запись завершены. Всё довольно просто. Если тебя одолевают вопросы почему несмотря на то, что и память и порты ввода-вывода, через которые подключены внешние устройства, не конфликтуют, то разгадка будет довольно простой. В каждый момент времени процессор обращается только к одному конкретному устройству: либо памяти, либо через порты к портам ввода-вывода. И шина управления обеспечивает правильное разделение доступа.

Все описанное – упрощенная модель микропроцессорной системы, каковой является и персональный компьютер, и микроконтроллер.

Теперь вырисовывается уточнение к алгоритму работу микроконтроллера, который я описывал в прошлой главе. Когда ты подаёшь питание на МК, то он выставляет сигнал на шине управления MREQ, RD, а на шине адреса адрес, по которому в ячейке памяти программ должна находиться первая команда его программы (чаще всего это нулевой адрес памяти программ). Затем МК её выполнит и в зависимости от этой и последующих команд на шине управления, адреса и данных будут появляться соответствующие сигналы и данные.

Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

Подведу итоги:

  1. Процессор, память и порты ввода-вывода общаются между собой с помощью шин.
  2. Основные шины бывают нескольких видов: шина данных, шина адреса, шина управления
  3. Разрядность шины адреса и шины данных определяется конструкцией процессора

Теперь ты продвинулся ещё на шаг в понимании того, как работает цифровая техника и в частности микропроцессорные системы. В следующий раз мы продвинемся еще на шаг к нашей цели — пониманию как устроен мир электроники

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    🎥 Видео

    Разрядность системыСкачать

    Разрядность системы

    Системная шина процессораСкачать

    Системная шина процессора

    Всё о видеокартах за 11 минутСкачать

    Всё о видеокартах за 11 минут

    Шина компьютера, оперативная память, процессор и мостыСкачать

    Шина компьютера, оперативная память, процессор и мосты

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]Скачать

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]

    Как работает процессор: частоты, шины и т.д.Скачать

    Как работает процессор: частоты, шины и т.д.

    Частота процессора или частота системной шины?Скачать

    Частота процессора или частота системной шины?

    Как выбрать видеокарту. Или почему шина 256 бит - не рулит. (см. описание)Скачать

    Как выбрать видеокарту. Или почему шина 256 бит - не рулит. (см. описание)

    169 секунд и ты знаешь как работает процессорСкачать

    169 секунд и ты знаешь как работает процессор

    х64 или х86? Как узнать разрядность процессора и архитектуру windows?Скачать

    х64 или х86? Как узнать разрядность процессора и архитектуру windows?

    Разрядность ОС и процессоров. Что лучше x64 или x32 (x86)?Скачать

    Разрядность ОС и процессоров. Что лучше x64 или x32 (x86)?

    Принцип работы процессора на уровне ядраСкачать

    Принцип работы процессора на уровне ядра

    04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]Скачать

    04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]

    На что способны 32 и 64-битные мобильные процессорыСкачать

    На что способны 32 и 64-битные мобильные процессоры

    Частота процессора, множитель и системная шинаСкачать

    Частота процессора, множитель и системная шина
Поделиться или сохранить к себе:
Технарь знаток