Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут
электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами
компьютера. Кстати, если Вы думаете, что те разъемы, куда вставляются платы расширения и есть шины, то Вы жестоко
ошибаетесь. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще
не видно на материнских платах.
Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи
данных. Начнем по порядку.
- Тактовая частота
- Разрядность
- Скорость передачи данных
- Частота системной шины
- Параметры FSB у некоторых микропроцессоров
- Влияние на производительность компьютера
- Частота процессора
- Память
- Периферийные шины
- Полезное
- Смотреть что такое «Частота системной шины» в других словарях:
- Особенности системной шины QPI.
- Особенности системной шины QPI.
- 🔍 Видео
Тактовая частота
Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет
кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием
электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и
называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через
определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для
большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на
каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций
за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание
в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера
работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать,
совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так
называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого
устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно
выше тактовой частоты ОЗУ.
Разрядность
Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят,
что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам
одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом
деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных
выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.
Скорость передачи данных
Название этого параметра говорит само за себя. Он высчитывается по формуле:
тактовая частота * разрядность = скорость передачи данных
Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте
в 100 МГц.
Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов:
неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым
данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.
За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав
набора системной логики (чипсет).
Теперь поговорим конкретно о тех шинах, которые присутствуют на материнской плате. Основной
считается системная шина FSB (Front Side Bus). По этой шине передаются данные между процессором и оперативной памятью,
а также между процессором и остальными устройствами персонального компьютера. Вот тут вот есть один подводный камень.
Дело в том, что работая над материалом этой статьи, я столкнулся с одной неразберихой – существует такая фигня, как шина
процессора. По одним данным системная шина и шина процессора это есть одно и тоже, а по другим – нет. Я перерыл кучу книг
и пересмотрел кучу схем. Вывод: поначалу процессор подключался к основной системной шине через собственную, процессорную,
шину, в современных же системах эти шины стали одним целым. Мы говорим – системная шина, а подразумеваем процессорную, мы
говорим — процессорная шина, а подразумеваем системную. Двинемся дальше. Фраза: «Моя материнская плата работает на частоте
100 МГц» означает, что именно системная шина работает на тактовой частоте в 100 МГц. Разрядность FSB равна разрядности
CPU. Если Вы используете 64 разрядный процессор, а тактовая частота системной шины 100 МГц, то скорость передачи данных
будет равна 800 Мбайт/сек.
Кроме системной шины на материнской плате есть еще шины ввода/вывода, которые отличаются друг от друга
по архитектуре. Перечислю некоторые из них:
Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать
Частота системной шины
FSB (англ. Front side bus , переводится как «системная шина») — компьютерная шина, обеспечивающая соединение между x86-совместимым центральным процессором и внешним миром.
Как правило, современный персональный компьютер на базе x86-совместимого микропроцессора устроен следующим образом: микропроцессор через FSB подключается к системному контроллеру (обычно системный контроллер персонального компьютера называют «северным мостом», англ. North Bridge ). Системный контроллер имеет в своём составе контроллер ОЗУ (в некоторых современных персональных компьютерах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин, к которым подключаются периферийные устройства. Получил распространение подход, при котором, к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express 16x, а менее производительные устройства (микросхема PCI) подключаются к т. н. «южному мосту» (англ. South Bridge ), который соединяется с северным мостом специальной шиной. Набор из «южного» и «северного» мостов часто называют чипсетом (англ. chipset ).
Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.
Некоторые компьютеры имеют внешнюю кэш-память, подключенную через «заднюю» шину (англ. back side bus ), которая быстрее, чем FSB, но работает только со специфичными устройствами.
Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB). Иногда частота вторичной шины является производной от частоты FSB, иногда задаётся независимо.
Читайте также: Шины pirelli cinturato p7 245 50 r19
Видео:Системная шина процессораСкачать
Параметры FSB у некоторых микропроцессоров
Видео:Частота процессора, множитель и системная шинаСкачать
Влияние на производительность компьютера
Частота процессора
Частота, на которой работает центральный процессор, определяется исходя из частоты FSB и коэффициента умножения. Большинство современных процессоров имеют заблокированный коэффициент умножения, так что единственным способом разгона является изменение частоты FSB.
Память
До определённого момента в развитии компьютеров частота работы памяти совпадала с частотой FSB, на современных персональных компьютерах частоты FSB и шины памяти могут различаться. Обычно, частота памяти выше и задается делителями по отношению к FSB. Самый часто встречающийся делитель- 4:3.
Периферийные шины
На старых системах частоты шин ISA, PCI, AGP задавались в соотношении с FSB (изменение частоты FSB приводило к изменению частоты шины), на новых системах частоты для каждой шины задаются отдельно.
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Частота системной шины» в других словарях:
ТАКТОВАЯ ЧАСТОТА — (clock rate), число основных операций (циклов выборки и исполнения команд) компьютера (см. КОМПЬЮТЕР), производимых за 1 секунду. Измеряется в герцах (Hz, Гц; и их производных по системе СИ килогерцах, kHz, кГц, мегагерцах, MHz, МГц; гигагерцах,… … Энциклопедический словарь
Список микропроцессоров Intel — Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту … Википедия
Pentium 4 — > Центральный процессор Производство … Википедия
Athlon XP — > Центральный процессор … Википедия
Willamette — > Центральный процессор Производство: с 2000 по 2008 год Производитель: ЦП: 1300 3800 МГц Частота FSB … Википедия
Duron — Duron >> Центральный процессор … Википедия
Celeron — Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон … Википедия
Athlon — > Центральный процессор … Википедия
Список моделей Pentium 4 — Основная статья: Pentium 4 Pentium 4 Intel Pentium 4 x86 совместимый процессор, анонсированный 20 ноября 2000 года. К процессорам семейства отн … Википедия
Список микропроцессоров Pentium 4 — Основная статья: Pentium 4 Pentium 4 … Википедия
Видео:Шина компьютера, оперативная память, процессор и мостыСкачать
Особенности системной шины QPI.
Видео:Системная шина персонального компьютера ISAСкачать
Особенности системной шины QPI.
Системная шина играет ключевую роль во взаимодействии CPU с остальными компонентами компьютера. Intel разработала для своих новых многоядерных процессоров скоростной и экономичный интерфейс QPI. Последовательная шина QPI позволила ликвидировать многие «узкие места. В случае, если процессору потребуется доступ к выделенной памяти другого CPU, он сможет связаться с ней посредством одного из каналов QPI.
Основное достоинство нового интерфейса QPI – это сочетание высокой пропускной способности — до 15 Гбит/с и низкого энергопотребления (не более 5,0 мВт на каждый гигабит в секунду при пропускной способности 15 Гбит/с). При скорости передачи данных 5 Гбит/с новый интерфейс Intel обладает уровнем энергопотребления не более 2,7 мВт на каждый гигабит в секунду. Эти результаты сегодня являются рекордными с точки зрения эффективности работы современных приёмников данных Теоретически, Intel может повысить пропускную способность существующих интерфейсов в три раза, довольствуясь только 25% уровня энергопотребления нынешних интерфейсов.
Главный параметр системы, влияющий на частоту практически всех узлов системы – частота тактового генератора — Host Clock Frequency (при конфигурировании задаётся на первом же экране раздела «Performance»). Штатное значение этой частоты – 133 МГц, однако некоторые платы предлагают широкие возможности для её увеличения, например, до 240 МГц (пределы медных линий см. на рис. 1).
Частота шины QPI формируется за счет умножения определенного коэффициента на частоту тактового генератора, равную в номинале 133 МГц. Ее также называют опорной частотой шины QPI — QPI bclk или просто Bclk (есть, например, специальная утилита «CPU-Z», которая определяет ее как Bus Speed). За счет Bclk формируются частоты ядер процессора, кэш-памяти, контроллера памяти и частота системной памяти.
Таким образом, в современных системах на процессорах Intel в Core i7 частота 133 МГц – это просто частота тактового генератора, формирующего все остальные частоты.
Аналогичным образом формируется и частота шины памяти, которая использует свой собственный набор множителей.Для частоты шины памяти процессоры Core i7 предложат несколько доступных множителей. Например, процессор Core i7-965 Extreme Edition предлагает выбор между 6x, 8x, 10x и 12x, что означает поддержку этим процессором памяти DDR3-800/1067/1333/1600 SDRAM.
Интерфейс QPI, связывающий процессор с северным мостом (и другими процессорами см. рис. 2), также использует эту частоту в качестве базовой, умножая её на свой собственный коэффициент. Частота интерфейса QPI будет варьироваться на разных моделях CPU. Так, в Core i7-965 Extreme Edition эта шина работает на частоте 3,2 ГГц, в то время как на Core i7-940 и i7-920 её частота понижена до 2,4 ГГц.
Что касается возможности разгона шины QPI, то почти все процессоры будут ею обладать в полной мере. Множитель частоты шины QPI — от 4x до 64x (но процессоры Core i7 920 -2.66 ГГц и Core i7 940 — 2.93 ГГц не будут позволять повышать множитель, определяющий тактовую частоту ядер и, соответственно, технология Intel Dynamic Speed Technology ими тоже поддерживаться не будет).
Частота шины QPI для процессоров Intel Core i7-920 и Core i7-940 составляет 2,4 ГГц, что эквивалентно пропускной способности 4800 мегатранзакций в секунду (или 4,8 ГТ/с). Для Core i7-965 EE это значение соответствует 3,2 ГГц или 6,4 ГТ/с. Зная частоту QPI можно высчитать коэффициент умножения шины у каждого из процессоров: для Core i7-920 и Core i7-940 он равен 18, для Core i7-965 EE — 24. Но частота шины Quick Path Interconnect не единственная проблема, с которой можно будет столкнуться при разгоне Core i7. При разгоне CPU путем повышения Bclk будут расти частоты всех блоков процессора, шины QPI и памяти, что может нарушить их стабильную работу.
В новых CPU кэш третьего уровня и контроллер памяти (данная часть процессора называется Uncore) работает на отличной от процессора частоте (по рекомендации Intel, частота этих блоков должна быть в два раза выше эффективной частоты памяти). Данный параметр изменяется в настройках BIOS Setup материнской платы (коэффициентом или выбором частоты). Отслеживать значения Uncore можно, например, при помощи все той же утилиты CPU-Z — за это отвечает параметр NB Frequency в закладке Memory.
Значительного повышения эффективности новой шины удалось добиться за счёт динамического управления частотой и напряжением принимающего и передающего чипов, а также некоторых других нововведений. Кроме того, компания также разработала чип-диспетчер, который позволяет аппаратно распределять потоки между ядрами процессора. Производительность симулированного 64-ядерного процессора при его помощи удалось повысить в два раза. Все эти новые разработки Intel приведут к появлению еще более эффективных и экономичных многоядерных процессоров. Новая технологии приёма/передачи данных, которая будет использоваться в многопроцессорных системах следующего поколения, требующих не только повышенной пропускной способности канала ввода/вывода, но и более эффективного с точки зрения потребляемой мощности интерфейса передачи информации.
Шина QPI, является аналогом шины HyperTransport от AMD, и тоже предназначена для связи процессора с другими компонентами. Она призвана обеспечить согласованный обмен данными между небольшими группами локальных процессоров, а также взаимодействие между банками памяти (даже не обязательно одного типа) в распределенных системах, включающих не более 128 процессоров. QPI обеспечивает меньшие задержки и более высокую производительность, по сравнению с HyperTransport.
Шина QuickPath дебютировала в рамках серверной платформы Tylersburg, которая использует процессоры поколения Nehalem с разделяемым кэшем третьего уровня и поддержкой «виртуальной многоядерности», в частности, система на базе двух четырёхъядерных процессоров сможет имитировать работу шестнадцати процессорных ядер.
Ключевой особенностью новой архитектуры является применение концепции масштабируемой разделяемой памяти (scalable shared memory). В рамках новой архитектуры каждый CPU будет иметь собственную выделенную память, к которой он будет обращаться напрямую, через свой интегрированный контроллер памяти.
В случае, если процессору потребуется доступ к выделенной памяти другого CPU, он сможет связаться с ней посредством одного из каналов QuickPath Interconnect. Как и шина HyperTransport, применяемая в процессорах компании AMD, QPI будет использовать последовательную связь по схеме «точка-точка» (point-to-point), что обеспечит высокую скорость при малой латентности. Итак, основными ключевыми характеристиками Intel QuickPath Architecture являются:
— производительность каналов QuickPath Interconnect до 6,4 гигатранзакций в секунду (благодаря чему общая пропускная способность может достигать 25,6 Гбайт/сек)
— QPI уменьшает количество служебной информации, необходимой для функционирования многопроцессорных систем (что, соответственно, позволяет повысить скорость передачи полезных данных);
— реализация контроля при помощи циклического избыточного кода (CRC) и повторной передачи при обнаружении ошибок на канальном уровне (что позволяет обеспечить целостность данных без ощутимого влияния на производительность);
— возможность реализации высокоуровневых функций обеспечения надежности, готовности и удобства обслуживания (RAS, Reliability, Availability and Serviceability) благодаря реконфигурации каналов в случае повреждения отдельных участков, поддержке «горячей замены». При нарушении сигнала в одной или нескольких из линий контроллер шины может автоматически перенастроить QPI на ширину 15 и даже 5 бит, не теряя работоспособности, таким образом, серверы, например, на базе мощных процессоров Xeon 5500 будут обладать повышенной устойчивостью к сбоям шины (рис. 3). При организации шины с различной шириной линий, управлением потоком данных занимается специальный агент QPI, который распределяет поток данных перед тем, как отправить его по различным физическим линиям, а при приеме аналогичный агент собирает разные потоки данных в один (рис. 3).
Рис. 3. Пример конфигурирования 20 каналов в четыре группы по 5 каналов
В случае, если процессору потребуется доступ к выделенной памяти другого CPU, он сможет связаться с ней посредством одного из каналов QPI (рис. 2). Шина QPI использует последовательную связь по схеме «точка-точка» (point-to-point), что обеспечивает высокую скорость при малой латентности.
Рис. 4. Архитектурные особенности процессоров Core i7 с шиной QPI
Серверные модели оборудованы двумя (и более) линиями QPI (рис. 4), что позволяет выделить всем критичным направлениям (например, связь двух процессоров между собой и каждого из них с северным мостом) по собственному соединению. В любом случае, производительности QuickPath Interconnect вполне достаточно, чтобы обеспечить нормальную работу платформ с несколькими CPU. Интерфейс QPI в 2-3 раза эффективнее и к тому же не обременен взаимодействием с оперативной памятью (этим занимается встроенный контроллер памяти DDR3).
Рис. 5. Принципы организации шины QuickPath Interconnect (каждую отдельную дифференциальную пару называют линией. 20 линий для обмена плюс линии синхронизации в каждом направлении образуют 84-х контактный интерфейс)
Специальный последовательный интерфейс с топологией точка-точка, именованный как QPI (QuickPath Interconnect) с технической точки зрения представляет собой два 20-битных соединения, ориентированных на передачу данных в прямом и обратном направлении (рис. 5). Из 20 битного соединения 16 бит предназначаются для передачи данных, оставшиеся четыре – носят вспомогательный характер, они используются протоколом и коррекцией ошибок. Таким образом, QPI является последовательной, высокоскоростной двунаправленной шиной. Ее ширина в каждую сторону (передача и прием) составляет по 20 бит (20 отдельных пар линий), при этом 16 бит отводится для передачи данных, две линии зарезервированы для передачи служебных сигналов и еще две — для передачи кодов коррекции ошибок CRC. C учетом еще двух пар линий, используемых для сигналов синхронизации (одна на прием и одна на передачу), получаем, что шина QPI состоит из 42 пар линий, то есть является 84-контактной. Это соединение представляет собой пару из двух шин функционирующих в режиме полного дуплекса, снабженных задающей тактовую частоту линией.
Базовый физический уровень состоит из двойного симплексного канала, осуществляющего функции приемной и передающей пары (т. е. по сути реализован дуплексный коммуникационный канал). На физическом уровне шина образована двумя парами проводников: одна пара служит для передачи данных, а вторая — для их приема (рис. 6. Две такие пары позволяют организовать двунаправленную линию передачи данных, если полосы пропускания недостаточно, то для того, чтобы обеспечить большую пропускную способность, поддерживается не одна, а несколько таких двунаправленных линий связи. Этот уровень интерфейса определяет операцию и особенности индивидуальных сигналов линий шины QPI.
Физический уровень содержит все необходимые схемы для выполнения интерфейсных операций обмена данными, включая драйвер и входные/входные буферы, параллельное-последовательное и последовательно-параллельное преобразование, схему(ы) ФАПЧ и схемs согласования импеданса. Кроме того, он включает также логические функции, связанные с инициализацией и поддержкой интерфейса.
Логическая часть физического уровня обеспечивает соединение со уровнем связи и управляет потоком информации между ними (вперед и назад). А также управляет инициализацией и конфигурированием канала связи и управляет шириной информационной магистрали в операции обмена.
Рис. 6. Общая блок-схема физического уровня
Физический интерфейс шины отличается простотой реализации, в нем используются низковольтные, дифференциальные сигналы (рис. 7). Для передачи сигналов используются две линии, по которым синхронно передается прямой и инверсный сигнал. Для мобильных систем могут использоваться сигналы снижающие энергопотребление шиной, на линиях шины обеспечивается низкий уровень перекрестных помех.
Рис. 7. Принципы физической реализации линий связи шины
Физический уровень разделен на две секции. Аналоговая (или электрическая) секция управляет передачей цифровых данных. Эта секция формирует соответствующие аналоговые уровни сигналов с надлежащим выбором времени относительно сигнала синхронизации и затем принимает сигналы данных на другом конце и преобразовывает их обратно в цифровые данные. Этот уровень ответственен за сигналы и специфические детали выполнения операции обмена между двумя агентами. Этот уровень непосредственно управляет передачей сигналов данных на проводах шины, включает электрические уровни, рассчитывая аспекты, и решает логические проблемы, возникающие при посылке и получении каждого бита информации по параллельным шинам. Передача сигналов в обе стороны выполняется на высокой скорости в дифференциальном виде по 20 отдельным парам в одном цикле шины, реализующем одну операцию обмена. Отдельная линия синхронизации сопровождает свой набор из 20 пар линий передачи данных.
Интерфейс Intel® QuickPath чтобы для обеспечения передачи всей номенклатуры сигналов одной шины QPI, работающей в ее полной ширине, на физическом уровне использует восемьдесят четыре линии и соответственно 84 контакта. В некоторых случаях, связь может осуществляться в половине или четверти ширины шины, например, чтобы уменьшить расход энергии или из-за отказов на линии. Единицу информации, переданной в каждой единице времени физическим слоем называют phit, который является акронимом для физической единицы. Например, каждый phit может содержать 20 бит информации. Типичные скорости передачи сигналов связи в текущих продуктах обеспечивают в операциях обмена в 6.4 GT/s для систем с короткими связями между компонентами, и 4.8 GT/s для более длинных связей, используемых в больших мультипроцессорных системах. Управлением потоком данных занимается специальный «агент», который распределяет поток данных перед тем, как отправить его по различным физическим линиям, а при приеме аналогичный агент собирает разные потоки данных в один.
Для обмена информацией между компонентами системы используются пакеты. Пакетная связь начинается на канальном уровне для реализации функций управления каналом. Пакеты формируются для того, чтобы надежно перенести информацию от передающего к принимающему компоненту. Поскольку пакеты передаются через соответствующие уровни, они дополняются вспомогательной информацией, необходимой для обработки пакета на соответствующем уровне. На принимающей стороне происходит обратный процесс, и пакет преобразовывается обратно, начиная с физического уровня и далее, до формата, в котором он может быть обработан принимающим устройством.
Рис. 8. Типовая обобщенная структура пакета и состав пакета для разных уровней
Физический уровень принимает с линий связи кадр проверяет его корректность и выделяет из него пакет. Физическим уровнем биты phits и биты контроля циклического избыточного кода не контролируются. Физический уровень объединяет phits в пакеты, и передает пакеты на уровень связи. Каждый пакет, состоит из 80 бит (рис. 8). Рис. 9 иллюстрирует возможности физического уровня передачи информации кадра по шине QPI.
Рис. 9. Физический уровень Intel® QPI (Phit) требует для передачи 20 физических линий передач.
Поддержка ассиметричных связей и хорошая масштабируемость по скорости, по ширине шины, частоте и направлению, позволяет разработчикам систем выбирать решение полностью соответствующее их задачам. Широкая полоса пропускания позволяет в проектируемых многопроцессорных системах легко добавлять новые высокопроизводительные компоненты. Использование шины QPI позволяет сократить время на разработку этих проектов, так как добавление в систему новых чипов не вызывает проблем.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🔍 Видео
Системная шина персонального компьютера PCIСкачать
Частота процессора, множитель и системная шинаСкачать
Системная шина персонального компьютера AGPСкачать
Частота процессора или частота системной шины?Скачать
Очень низкая скорость поцессора (0,78 ГГц) - Что делать?Скачать
Системные шины персонального компьютера для ...Скачать
Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать
Системная шина персонального компьютера pci expressСкачать
Как работает процессор: частоты, шины и т.д.Скачать
О природе тормозящего Wi-Fi: 2.4 Ггц vs 5 ГГц, польза 802.11ac и соседи-пиратыСкачать
Лекция 281. Шина ISAСкачать
КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать
Процессор ноутбук низкая частота тормозитСкачать
Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать
Что Ограничивает Максимальную Частоту Процессора? Процессор на 9 ГГц! // #ПолезныеFiшКiСкачать