Каждый двигатель имеет паспортные данные: N – мощность, n – число оборотов вала в минуту. Требуется найти вращающий момент на валу этого двигателя.
Предположим, что вал повернулся на некоторый угол β (рис.7.1). При этом вращающий момент M совершит работу
Если вал выполнит полный оборот, то угол β = 2π. При выполнении n оборотов в минуту угол β = 2πn. Работа, совершенная вращающим моментом M будет:
Работа, выполненная в единицу времени – есть мощность N. Поскольку (а) представляет работу, совершенную за одну минуту, т.е. за время t = 60 секунд, то формула мощности примет вид:
что позволяет найти величину вращающего момента на валу двигателя:
Если мощность задаётся в лошадиных силах (для двигателей внутреннего сгорания) (1л. с. = 750 Н·м/с), то формула (7.1) принимает вид
M= , [Н·м] (7.1а)
При задании мощности в киловаттах (для электродвигателей) (1 Квт. = 1010 Н·м/с) формула (7.1) будет выглядеть так:
M= , [Н·м] (7.1б)
Пример № 7.1. Найти вращающий момент M на валу электродвигателя мощностью 30 Квт, если угловая скорость ω вращения вала составила 100 рад/с.
1. Из теоретической механики известно, что угловая скорость ω связана с числом оборотов n соотношением
что позволяет найти число оборотов в мин.
2. Вращающий момент на валу двигателя находим по формуле (7.1б)
- Вращающий момент. Вращающий момент: формула. Момент силы: определение
- Процесс вращения
- Определение момента силы
- Что такое рычаг силы?
- Направление действия величины M¯
- Физический смысл величины M¯
- Единицы измерения момента силы
- Динамика вращения
- Пример решения задачи
- Крутящий момент двигателя: что это такое
- Крутящий момент и лошадиная сила
- Физические определения мощности и крутящего момента двигателя
- Как изменение крутящего момента влияет на динамику машины
- Крутящий момент у бензиновых и дизельных моторов
- Какие можно сделать выводы по вышесказанному
- Способы прироста в крутящем моменте двигателя
- Как правильно разгоняться, используя максимальный крутящий момент
- 📹 Видео
Видео:Вращающий момент Физика в опытах и экспериментахСкачать
Вращающий момент. Вращающий момент: формула. Момент силы: определение
Вращение является типичным видом механического движения, которое часто встречается в природе и технике. Любое вращение возникает в результате воздействия некоторой внешней силы на рассматриваемую систему. Эта сила создает так называемый вращающий момент. Что он собой представляет, от чего зависит, рассматривается в статье.
Видео:Что такое крутящий момент?Скачать
Процесс вращения
Прежде чем рассматривать концепцию вращающего момента, дадим характеристику систем, к которым может быть применена эта концепция. Система вращения предполагает наличие в ней оси, вокруг которой осуществляется круговое движение или поворот. Расстояние от этой оси до материальных точек системы называется радиусом вращения.
С точки зрения кинематики, процесс характеризуется тремя угловыми величинами:
- углом поворота θ (измеряется в радианах);
- угловой скоростью ω (измеряется в радианах в секунду);
- ускорением угловым α (измеряется в радианах в секунду квадратную).
Эти величины связаны друг с другом следующими равенствами:
Примерами вращения в природе являются движения планет по своим орбитам и вокруг своих осей, движения смерчей. В быту и технике рассматриваемое движение характерно для моторов двигателей, гаечных ключей, строительных кранов, открывания дверей и так далее.
Видео:Крутящий момент. Что это такое и зависит ли от мощности?Скачать
Определение момента силы
Теперь перейдем к непосредственной теме статьи. Согласно физическому определению, момент силы представляет собой векторное произведение вектора приложения силы относительно оси вращения на вектор самой силы. Соответствующее математическое выражение можно записать так:
Здесь вектор r¯ направлен от оси вращения к точке приложения силы F¯.
В этой формуле вращающего момента M¯ сила F¯ может быть направлена как угодно относительно направления оси. Тем не менее параллельная оси компонента силы не будет создавать вращения, если ось жестко закреплена. В большинстве задач по физике приходится рассматривать силы F¯, которые лежат в плоскостях перпендикулярных оси вращения. В этих случаях абсолютное значение вращающего момента можно определить по следующей формуле:
Где β является углом между векторами r¯ и F¯.
Видео:Как работает полный привод? Дифференциал, и что такое крутящий момент)))Скачать
Что такое рычаг силы?
Рычаг силы играет важную роль при определении величины момента силы. Чтобы понять, о чем идет речь, рассмотрим следующий рисунок.
Здесь показан некоторый стержень длиною L, который закреплен в точке вращения одним из своих концов. На другой конец действует сила F, направленная под острым углом φ. Согласно определению момента силы, можно записать:
Угол (180 o -φ) появился потому, что вектор L¯ направлен от закрепленного конца к свободному. Учитывая периодичность тригонометрической функции синуса, можно переписать это равенство в таком виде:
Теперь обратим внимание на прямоугольный треугольник, построенный на сторонах L, d и F. По определению функции синуса, произведение гипотенузы L на синус угла φ дает значение катета d. Тогда приходим к равенству:
Линейная величина d называется рычагом силы. Он равен расстоянию от вектора силы F¯ до оси вращения. Как видно из формулы, понятием рычага силы удобно пользоваться при вычислении момента M. Полученная формула говорит о том, что вращающий момент максимальный для некоторой силы F будет возникать только тогда, когда длина радиус-вектора r¯ (L¯ на рисунке выше) будет равна рычагу силы, то есть r¯ и F¯ будут взаимно перпендикулярны.
Видео:Мощность или Крутящий Момент! Что Важнее!Скачать
Направление действия величины M¯
Выше было показано, что вращающий момент — это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.
Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:
- Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
- Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.
Читайте также: Втулка рулевого вала соболь
Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.
При решении практических задач разное направление вращающего момента (вверх — вниз, влево — вправо) учитывается с помощью знаков «+» или «-«. Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.
Видео:Редуктор увеличивает крутящий моментСкачать
Физический смысл величины M¯
В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:
- Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата.
- Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку.
- Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом — выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым.
Видео:Мощность или Крутящий момент, что Важнее!? Бензин или ДизельСкачать
Единицы измерения момента силы
Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же — это вектор.
Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:
Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).
Видео:Процедура расчета и замера КРУТЯЩЕГО МОМЕНТА НА ВАЛУСкачать
Динамика вращения
В начале статьи мы записали кинематические характеристики, которые используются для описания движения вращения. В динамике вращения главным уравнением, которое использует эти характеристики, является следующее:
Действие момента M на систему, имеющую момент инерции I, приводит к появлению углового ускорения α.
Данную формулу применяют, для определения угловых частот вращения в технике. Например, зная вращающий момент асинхронного двигателя, который зависит от частоты тока в катушке статора и от величины изменяющегося магнитного поля, а также зная инерционные свойства вращающегося ротора, можно определить, до какой скорости вращения ω раскручивается ротор двигателя за известное время t.
Видео:Крутящий момент, обороты и мощность двигателя. Простыми словамиСкачать
Пример решения задачи
Невесомый рычаг, длина которого составляет 2 метра, посередине имеет опору. Какой вес следует положить на один конец рычага, чтобы он находился в состоянии равновесия, если с другой стороны опоры на расстоянии 0,5 метра от нее лежит груз массой 10 кг?
Очевидно, что равновесие рычага наступит, если моменты сил, создаваемые грузами, будут равны по модулю. Сила, создающая момент в данной задаче, представляет собой вес тела. Рычаги силы равны расстояниям от грузов до опоры. Запишем соответствующее равенство:
Вес P2 получим, если подставим из условия задачи значения m1 = 10 кг, d1 = 0,5 м, d2 = 1 м. Записанное равенство дает ответ: P2 = 49,05 ньютона.
Видео:Момент силыСкачать
Крутящий момент двигателя: что это такое
Крутящий момент мотора (он же вращательный момент, или момент силы) – это векторная физическая величина, характеризующая вращательное действие силы на твёрдое тело и равная векторному произведению радиус-вектора, который проведёт от оси вращения к точке приложения силы. В физике момент силы понимается в качестве «вращающей силы». В общепринятой системе единиц единицей измерения момента силы стал Ньютон-метр (Н.м). 1 Н.м равен силе в 1 Ньютон, приложенной к рычагу в 1 метр.
Видео:Основы работы в среде Solidworks Simulation. Кручение цилиндрического валаСкачать
Крутящий момент и лошадиная сила
Автолюбители нередко дискутируют друг с другом: чей двигатель мощнее. Но иногда и не представляют при этом, из чего складывается данный параметр. Общепринятый термин «лошадиная сила» был введён изобретателем Джеймсом Уаттом в XVIII веке. Он придумал его, наблюдая за лошадью, которая была запряжена в поднимающий уголь из шахты механизм. Он рассчитал, что одна лошадь за минуту может поднять 150 кг угля на высоту 30-ти метров. Одна лошадиная сила эквивалентна 735,5 Ватт, или 1 кВт равен 1,36 л.с.
В первую очередь, мощность любого мотора оценивают в лошадиных силах, и лишь потом вспоминают о крутящем моменте. Но эта тяговая характеристика тоже даёт представление о конкретных тягово-динамических возможностях автомобиля. Крутящий момент является показателем работы силового агрегата, а мощность – основным параметром выполнения этой работы. Эти показатели тесно связаны друг с другом. Чем больше производится двигателем лошадиных сил, тем больше и потенциал крутящего момента. Реализуется этот потенциал в реальных условиях через трансмиссию и полуоси машины. Соединение этих элементов вместе и определяет, как именно мощность может переходить в крутящий момент.
Простейший пример – сравнение трактора с гоночной машиной. У гоночного болида лошадиных сил много, но крутящий момент требуется для увеличения скорости через редуктор. Чтобы такая машина двигалась вперёд, надо совсем немного работы, потому что основная часть мощности используется для развития скорости.
Что касается трактора, то у него может быть мотор с таким же рабочим объёмом, который вырабатывает столько же лошадиных сил. Но мощность в этом случае используется не для развития скорости, а для выработки тяги (См. тяговый класс). Для этого она пропускается через многоступенчатую трансмиссию. Поэтому трактор не развивает высоких скоростей, зато он может буксировать большие грузы, пахать и культивировать землю, и т.д.
Читайте также: Киа спектра подвесной подшипник приводного вала
В двигателях внутреннего сгорания сила передаётся от газов сгорающего топлива поршню, от поршня – передаётся на кривошипный механизм, и далее на коленчатый вал. А коленвал, через трансмиссию и приводы, раскручивает колёса.
Естественно, крутящий момент двигателя не постоянен. Он сильней, когда на плечо действует бо́льшая сила, и слабей – когда сила слабнет или перестаёт действовать. То есть, когда водитель давит на педаль газа, то сила, воздействующая на плечо, повышается, и, соответственно увеличивается крутящий момент двигателя.
Мощность обеспечивает преодоление всевозможных сил, которые мешают двигаться автомобилю. Это и сила трения в двигателе, трансмиссии и в приводах автомобиля, и аэродинамические силы, и силы качения колёс и т.д. Чем больше мощность, тем большее сопротивление сил машина сможет преодолеть и развить большую скорость. Однако мощность – сила не постоянная, а зависящая от оборотов мотора. На холостом ходу мощность одна, а на максимальных оборотах – совершенно другая. Многими автопроизводителями указывается, при каких оборотах достигается максимально возможная мощность автомобиля.
Зачастую водитель сталкивается с такими ситуациями, когда требуется придать автомобилю значительное ускорение для выполнения необходимого маневра. Прижимая педаль акселератора в пол, он чувствует, что автомобиль ускоряется слабо. Для быстрого ускорения нужен мощный крутящий момент. Именно он и характеризует приёмистость автомобиля.
Основную силу в двигателе внутреннего сгорания вырабатывает камера сгорания, в которой воспламеняется топливно-воздушная смесь. Она приводит в действие кривошипно-шатунный механизм, а через него – коленчатый вал. Рычагом является длина кривошипа, то есть, если длина будет больше, то и крутящий момент тоже увеличится.
Однако увеличивать кривошипный рычаг до бесконечности невозможно. Ведь тогда придётся увеличивать рабочий ход поршня, а вместе с ним и размеры двигателя. При этом уменьшатся и обороты двигателя. Двигатели с большим рычагом кривошипного механизма можно применить только лишь в крупномерных плавательных средствах. А в легковых автомашинах с небольшими размерами коленчатого вала не поэкспериментируешь.
Видео:Крутящий момент и лошадиные силы | Science Garage На РусскомСкачать
Физические определения мощности и крутящего момента двигателя
Из курса физики за девятый класс нам известно, что крутящий момент М равняется произведению силы F, прикладываемой к рычагу длиной плеча L. Высчитывается он по формуле: М = F * L.
Определение мощности мотора и понимание данного параметра, сложившееся в науке, звучит следующим образом: это физическая величина, которая характеризует работу двигателя, выполняемую им за определённое время. То есть, мощность показывает, как быстро машина, имеющая определённую массу, сможет преодолеть определённое расстояние. Чем выше мощность, тем большую максимальную скорость разовьёт автомобиль при его неизменной снаряжённой массе. В классической физике мощность измеряют в ваттах или киловаттах, а лошадиная сила является внесистемной единицей измерения.
Понимание крутящего момента сложнее. Крутящим моментом двигателя является качественный показатель, который характеризует силу вращения коленчатого вала мотора. Рассчитывается он как произведение силы, приложенной к поршню, на плечо (т.е. расстояние от центра оси вращения коленвала до места крепления поршня (шатунной шейки). Крутящий момент напрямую зависит от силы давления газов в цилиндре на поршень, а также от рабочего объёма мотора и от степени сжатия топливно-воздушной смеси в цилиндрах. Значительно более высоким крутящий момент получается у дизельных двигателей – как раз потому, что у них чрезвычайно высока степенью сжатия смеси солярки и воздуха в камерах сгорания.
Высокий крутящий момент двигателя даёт автомашине лучшую динамику разгона, уже при низких оборотах вращения коленчатого вала, существенным образом увеличивает тяговые характеристики мотора: повышает грузоподъёмность машины и её проходимость.
Своего наибольшего значения крутящий достигает при определённых оборотах. Моторам бензиновым оборотов требуется больше, чем дизелям. По сути, мощность двигателя является вторичной рабочей характеристикой мотора, которая является производной крутящего момента. Она линейно зависима от частоты вращения коленвала: чем обороты выше, тем больше и мощность мотора (естественно, до определённых пределов).
Крутящий момент тоже увеличивается при увеличении оборотов двигателя. Но, достигнув своего наивысшего значения (при определённой частоте вращения коленчатого вала), его показатели начинают понижаться, уже вне зависимости от дальнейшего прироста оборотов.
Видео:Экспериментальный стенд для измерения крутящего момента и мощности на валу. ч.1Скачать
Как изменение крутящего момента влияет на динамику машины
Чтобы обеспечить как можно более высокие динамические характеристики машины, автопроизводителями разрабатываются такие силовые агрегаты, которые обладают максимальным крутящим моментом в более широком диапазоне оборотов мотора. Высокий крутящий момент характерен для дизелей, а также для моторов многоцилиндровых и турбированных.
Чтобы реально оценить роль мощности и крутящего момента при формировании динамических характеристик машины, требуется учесть следующее:
- автомобиль с двигателем более мощным, но не обладающим достаточным крутящим моментом, будет уступать в разгонной динамике машине с меньшей мощностью, но более высоким крутящим моментом;
- высокий крутящий момент, который двигатель способен «подхватить» уже на низких оборотах, позволит автомобилю ускоряться намного эффективнее;
- наибольшая скорость, которую может развить автомобиль, напрямую зависит от мощности его двигателя, а крутящий момент, в отличие от динамики разгона, не влияет на этот показатель. Максимальная скорость автомобиля, который обладает огромным крутящим моментом, может быть и невелика. Например, мощные внедорожники имеют внушительный крутящий момент и невысокую максимальную скорость, а гоночные машины могут иметь небольшой крутящий момент на карданном валу, но высокую скорость.
Читайте также: Мотоблок с карданным валом отбора мощности
Таким образом, вне зависимости от мощности двигателя, разгонная динамика машины, его способность без проблем преодолевать подъёмы всецело зависят от того, каков максимальный крутящий момент. Чем больший крутящий момент передастся на ведущие колёса, и чем шире диапазон оборотов мотора, в котором он будет достигнут, тем увереннее автомобиль будет ускоряться и преодолевать непростые участки дорог.
Необходимо заметить, что прямое сравнение характеристик конструкционно идентичных, но имеющих различные крутящие моменты двигателей, будет иметь смысл только при одинаковых параметрах и трансмиссии тоже – когда коробки переключения передач будут обладать схожими передаточными отношениями. Если же эти параметры будут разными, то и сравнивать крутящие моменты и возможности двигателей нет практического смысла.
Видео:МОЩНОСТЬ мотора УВЕЛИЧИТСЯ если СДЕЛАТЬ так...Скачать
Крутящий момент у бензиновых и дизельных моторов
Бензиновые двигатели отличаются не самым большим крутящим моментом. Своего наибольшего значения крутящий момент бензинового двигателя достигает на оборотах не менее чем 3-4 тыс. об/мин. Однако бензиновый двигатель быстро сможет увеличить мощность и раскрутиться до 7-8 тыс. об/мин. При таких сверхвысоких оборотах мощность возрастает в разы.
Дизельный двигатель не отличается высокими оборотами. Обычно это 3-5 тыс. об/мин максимум, и тут он бензиновым моторам проигрывает. Однако крутящий момент дизельного двигателя выше в разы, и доступным он становится очень быстро, практически с холостого хода.
В качестве конкретного примера, можно вспомнить тесты двух двигателей от фирмы Ауди – один дизельный: 2.0 TDI мощностью 140 л.с. и крутящим моментом 320 Н.м, а второй бензиновый: 2.0 FSI мощностью 150 л.с. и крутящим моментом 200 Н.м. По итогам контрольной прогонки в различных режимах получается, что дизель на целых 30-40 л.с. мощнее бензинового двигателя в диапазоне от 1 до 4,5 тыс. оборотов. Поэтому и не сто́ит смотреть только на лошадиные силы. Бывает, что мотор с меньшим рабочим объёмом, но с высоким крутящим моментом показывает себя намного динамичнее, чем двигатель с большим рабочим объёмом, но низким крутящим моментом.
В технических характеристиках, которые указываются для каждого автомобиля и его двигателя, показатель максимального крутящего момента всегда указывается в сочетании с величиной оборотов, при которых такой крутящий момент может быть достигнут. При этом обычно считается: если максимальный крутящий момент может быть достигнут на оборотах до 4,5 тыс. об/мин., то такой двигатель можно назвать низкооборотным; а если более 4,5 тыс. об/мин – то высокооборотным.
При малом количестве оборотов в область сгорания поступает незначительное количество воздушно-топливной смеси за единицу времени, поэтому крутящий момент и мощность невелики. Увеличивая обороты, количество топливно-воздушной смеси (а вслед за ним и мощность, и крутящий момент) возрастают. Достигая значительных параметров, мощность начинает снижаться из-за механических потерь на трение механизмов; инерционных потерь; от недостаточного нагнетания воздуха (именуемого кислородным голоданием).
Из соображений обеспечения максимальных количеств поступающего воздуха в камеру сгорания даже на незначительных оборотах двигателя применяются системы турбированного наддува с электронным регулированием. Применяя такие системы турбонаддува, можно обеспечивать равномерность характеристик крутящего момента в широком диапазоне оборотов двигателя.
Видео:Мощность и крутящий момент двигателяСкачать
Какие можно сделать выводы по вышесказанному
Оценивая эксплуатационные параметры автомобиля и непосредственно рабочие характеристики его мотора, величина крутящего момента будет обладать большим приоритетом, чем мощность. Среди двигателей, которые имеют примерно одинаковые конструктивные и рабочие параметры, более предпочтительными будут те, у которых крутящий момент выше.
Для обеспечения лучшей динамики разгона машины и обеспечения оптимальных тяговых свойств двигателя, частоту вращения коленчатого вала надо поддерживать в том диапазоне значений, при которых крутящий момент может достичь пиковых своих показателей.
В итоге, можно сделать вывод о том, что классифицировать и сравнивать машины только по мощности (лошадиных силам) двигателя не совсем правильно. Необходимо обращать особенное внимание ещё и на крутящий момент (Н.м). Если крутящий момент двигателя значительно выше, чем у аналогичного или близкого по ТТХ конкурента, то такой мотор будет обладать бо́льшей динамикой.
Для движения в городском ритме лучше всего подходят низкооборотные моторы с турбонаддувом. Если же есть желание посоперничать в скоростях на трассе, то лучше выбрать автомобиль с высокооборотным силовым агрегатом.
Видео:КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать
Способы прироста в крутящем моменте двигателя
Величину, которая необходима для крутящего момента той или иной модели автомобиля, определяют инженеры ещё на предварительном этапе конструкторской разработки мотора. От неё зависят и другие элементы автомобиля: его подвеска, тормозное и рулевое управление, аэродинамика. Поэтому, прежде чем приступать к самостоятельному форсированию двигателя, важно убедиться, что машина не развалится от умощнения двигателя.
Способов увеличения крутящего момента и, вместе с ним, мощности двигателя, может быть много:
- изменение геометрических свойств поршневой группы;
- увеличение компрессии;
- замена инжекторов или форсунок;
- установка наддува на атмосферный двигатель;
- изменения в системе воздухозабора;
- доработка или замена системы выпуска выхлопных газов;
- чип-тюнинг, при помощи перепрограммирования топливной карты блока управления мотора.
Однако принудительное увеличение крутящего момента и мощности двигателя в значительной степени уменьшает ресурс его работы.
Видео:Что такое крутящий момент и почему это важно для шуруповертаСкачать
Как правильно разгоняться, используя максимальный крутящий момент
Для этого важно уметь работать с коробкой передач. Для максимального разгона надо переключаться так, чтобы обороты упали примерно на пик крутящего момента либо выше него, но чтобы оставался запас по увеличению оборотов – разгон больше оборотов максимальной мощности будет проходить медленней. Идеальным вариантом на обычных машинах можно назвать разгон «от пика момента до пика мощности». В тоже время, на двигателях современных автомобилей электроника просто не даст «перекрутить» мотор более его пика мощности – произойдёт «отсечка».
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
- Правообладателям
- Политика конфиденциальности
📹 Видео
Крутящий момент. ВведениеСкачать
Лошадиные силы vs Крутящий момент | Как это работает | В чем разницаСкачать
У кого крутящий момент лучше у дизеля или бензинового Что такое крутящий моментСкачать