Чаще всего покупатели при выборе компрессора ориентируются на паспортные характеристики производительности и давления. Но далеко не все из них знают о нюансах, которые скрываются за этими простыми терминами.
В данном материале мы попытаемся разобраться во всех особенностях термина «производительность компрессора», чтобы в дальнейшем вы могли избежать возможных ошибок при выборе оборудования.
- Определение производительности компрессора
- Обозначение производительности компрессора: IUPAC, ГОСТ 2939-63, FAD
- Как соотносятся значения производительности компрессора при нормальных условиях Nm 3 /h и производительность, приведенная к условиям всасывания
- Производительность компрессора, приведенная к нормальным условиям (760 мм рт. ст., 0°С), на 8% меньше производительности, приведенной к условиям всасывания (1 бар, 20°С)!
- Высокоэффективные компрессоры в холодильниках Korting
- Комфорт и безопасность
- Высокоэффективные компрессоры
- Безупречный дизайн
- Технологии, применяемые в современных компрессорах
- Инверторные компрессоры постоянного тока
- Спиральные компрессоры
- Турбокомпрессоры
- Поршневые компрессоры
- Винтовые компрессоры
- 🎥 Видео
Видео:Устройство и принцип работы винтового компрессораСкачать
Определение производительности компрессора
Под «производительностью» понимается выработку «чего-либо» за единицу времени. Применительно к компрессорам этим количественным параметром является сжатый воздух или газ. Итак, производительность компрессора — это параметр, который определяет, какой объем воздуха/газа он может сжать в единицу времени. Производительность оборудования принято измерять в «единицах объема за единицу времени», т.е. в л/мин, м3/мин, м3/ч и т.д. Но все мы знаем, что воздух меняет свой объем при изменении температуры и давления. Это значит, например, что компрессор, установленный у вас в цеху, и тот же компрессор высоко в горах будут иметь разную производительность. Другой пример: тот же компрессор в жаркий день произведет меньший объем сжатого воздуха, чем в холодный. Влажность воздуха также оказывает влияние на производительность компрессора. Вот почему при указании производительности компрессора необходимо также указывать условия (температуру, давление, влажность), при которых эта производительность определяется.
Объемный расход измеряется в м 3 /с (кубические метры в секунду). В случае с воздушным компрессором объемный расход может выражаться в литрах в секунду (л/с). При этом объемный расход — это и есть производительность компрессора и выражается производительность либо в так называемых нормальных литрах в секунду (Нл/с), либо в виде расхода газа свободного выпуска (л/с).
Если попытаться дать точное определение производительности компрессора, то оно будет звучать так: производительность — количество воздуха, выраженное в объемных единицах, подаваемое воздушным компрессором в единицу времени и пересчитанное на условия всасывания. Столь сложная формулировка производительности компрессора обусловлена тем фактором, что при различных начальных условиях (температура и давление) производительность одного и того же компрессора может отличаться. Именно поэтому было принято такое определение производительности, которое позволяет «зафиксировать» объемный расход компрессора на одном значении.
Видео:Аммиачный винтовой компрессор BITZER OS.A95: универсальный и эффективныйСкачать
Обозначение производительности компрессора: IUPAC, ГОСТ 2939-63, FAD
Как производители обычно указывают производительность компрессоров в своих красивых глянцевых каталогах? Какую производительность реально ожидать от компрессора?
Производительность указывается в так называемых «Нормальных кубических метрах в час (минуту)» – Nm 3 /h, Nm 3 /min. Под буквой «N» подразумеваются «нормальные условия», установленные Международным Союзом Теоретической и Прикладной Химии (IUPAC) — температура 0°С, абсолютное давление 101325 Па (760 мм рт. ст.), относительная влажность 0%. В России продолжает действовать ГОСТ 2939-63 «Газы. Условия для определения объема», согласно которому объем газов должен приводиться к следующим условиям: температура 20°С, абсолютное давление 101325 Па, относительная влажность 0%. Это означает следующее: встретив обозначение Nm 3 /h, можно с уверенностью сказать, что это производительность, приведенная к «нормальным условиям», установленным IUPAC. Встретив такое же обозначение на русском языке Нм 3 /ч, однозначно сказать, какие из «нормальных условий» ( ГОСТ или IUPAC) подразумеваются становится сложно. Этот вопрос необходимо обязательно уточнить у менеджеров поставляющей организации при выборе оборудования!
Часто зарубежные изготовители компрессоров указывают производительность компрессора в m 3 /h (m 3 /min) FAD при определенном выходном давлении. Что же означает аббревиатура FAD? Это не что иное, как сокращение от «Free Air Delivery» или «Подача Атмосферного Воздуха». Очень часто встречается пояснение, что это производительность компрессора, приведенная к условиям всасывания, которые обязательно при этом указываются. То есть, производительность по FAD – это количество сжатого компрессором атмосферного воздуха за единицу времени при заданных условиях на входе.
Видео:Энерго-Эффективный КомпрессорСкачать
Как соотносятся значения производительности компрессора при нормальных условиях Nm 3 /h и производительность, приведенная к условиям всасывания
Если условно считать воздух идеальным газом, то справедливо следующее выражение:
где P1, V1, T1 – давление, объем и температура воздуха на входе в компрессор (условия всасывания)
P2, V2, T2 – давление, объем и температура воздуха на выходе из компрессора (условия нагнетания)
R – универсальная газовая постоянная.
Из выражения, приведенного выше, легко можно получить следующее:
В этом выражении индексы 1 и 2 не обязательно указывают на «вход» и «выход» компрессора. Это просто разные условия состояния воздуха. Добавив в данное выражение значение интервала времени, получим аналогичное выражение, но уже для производительности:
где Q1 и Q2 – производительность при различных условиях. Теперь обозначим индексом N параметры, относящиеся к нормальным условиям, а индексом FAD — параметры определения производительности FAD:
Подставим в полученное выражение параметры для нормальных условий и условий FAD, которые указал производитель компрессора (они, как правило, перечислены в сноске к таблице характеристик компрессора, например, температура 20°С, абсолютное давление 1 бар = 100000 Па).Не забываем при этом, что температуру следует указывать не в °С, а в °К – градусах Кельвина, (°С + 273):
Итак, даже используя простейшую формулу пересчета, мы получили очень важный результат:
Видео:Какой компрессор лучше: безмасляный, ременный или коаксиальныйСкачать
Производительность компрессора, приведенная к нормальным условиям (760 мм рт. ст., 0°С), на 8% меньше производительности, приведенной к условиям всасывания (1 бар, 20°С)!
Что же это означает на практике? Предположим, вам требуется подобрать компрессор с производительностью 180 Nm 3 /h в модельном ряду какого-то определенного зарубежного производителя. Вы находите компрессор с производительностью 185 m 3 /h, но не обращаете внимания на условия, для которых эта производительность указывается. Вас все устраивает, совершается покупка. И только после ввода компрессора в эксплуатацию оказывается, что его производительность указана для условий 1 бар, 20 °С. А производительность при нормальных условиях: 185 × 0,92 = 170,2 Nm 3 /h. Это может стать неприятным сюрпризом, производительности выбранного компрессора может не хватить для нормальной работы установленного оборудования!
И еще одно небольшое уточнение: так как при измерении производительности и потребляемой мощности компрессора нормативно допускается погрешность, при выборе всегда ориентируйтесь на худший вариант (минимальная производительность и максимальная потребляемая мощность). Так же стоит учитывать возможные утечки в оборудовании, фильтрах и осушителях, трубопроводах и соединительных фитингах пневмосистемы.
Выбирая компрессор, закладывайте запас в 20-25% по производительности!
Читайте также: Компрессор для наружного блока кондиционера mitsubishi
Надеемся, что этот небольшой материал поможет вам избежать ошибок при подборе компрессорного оборудования. Если у Вас есть какие либо вопросы по выбору и эксплуатации оборудования воздухоподготовки, наши сервисные инженеры с удовольствием ответят на них. Звоните: +7 (831) 413-77-41, 216-48-06. Будем рады Вам помочь!
Возможно, Вам будут так же интересны следующие материалы сайта:
Замер производительности винтового компрессора — видео — компрессор ABAC Formula после капитального ремонта
Купить компрессор, каталог — большой выбор, конкурентные цены, винтовые и поршневые промышленные компрессоры
Запчасти для компрессоров — выбрать, купить запчасти Atlas Copco, Abac, Alup, Atmos, Berg, Ceccato, Comprag, Dalgakiran, Ekomak, Fiac, Fini, Kaeser, Kraftmann, Remeza, Sotras, Уралкомпрессормаш, Евразкомпрессор и др.
Ремонт компрессоров — опытные сервисные инженеры, срочный выезд, запчасти в наличии.
Фильтры для компрессоров — интернет-магазин: фильтры воздушные и масляные, сепараторы. Найти фильтр по артикулу производителя компрессора. Цены на фильтры, доставка по России — бесплатно!
Видео:Как выбрать компрессор?Скачать
Высокоэффективные компрессоры в холодильниках Korting
Благодаря холодильникам различные продукты остаются свежими намного дольше, а готовые блюда не портятся несколько дней. В замороженном виде еда и вовсе может храниться долгие месяцы. При выборе устройства следует обратить внимание на многие параметры: размеры, полезный объем и тип установки, технологию оттайки и класс энергопотребления, а также мотор-компрессор и используемый хладагент. Компания Korting предлагает вашему вниманию функциональные и экономичные холодильники и морозильные камеры.
Видео:ШОК 😱! На что Способен Безмасляный Компрессор DWT | Тест компрессор для гаражаСкачать
Комфорт и безопасность
Современная холодильная техника оснащается сенсорным управлением с большим цифровым дисплеем и точным электронным контролем температуры. Предусмотрена индикация открытой двери (световая и звуковая), которая вовремя оповестит пользователя о нарушении температурного режима. Холодильники Korting отличаются продуманным зонированием и приятной для глаз светодиодной подсветкой.
В системе охлаждения используется высокоэффективный и безопасный холодильный агент — R600a (изобутан). Благодаря технологии полный No frost вы сможете навсегда забыть о такой неприятной процедуре, как разморозка морозильной камеры. Поддерживаются востребованные функции интенсивного охлаждения и заморозки большого объема продуктов.
Видео:Как выбрать компрессор для гаража или строительства?Скачать
Высокоэффективные компрессоры
Мотор-компрессор отвечает за прокачку хладагента по системе охлаждения. Без него техника не будет выполнять свою основную функцию. В холодильниках «Кортинг» установлены высокоэффективные компрессоры, рассчитанные на многолетнюю бесперебойную эксплуатацию. Инновационные моторы работают тихо и экономично, они не нуждаются в дополнительном обслуживании. Максимальный уровень шума не превышает 40 дБ, это значение является комфортным для человека. Класс энергетической эффективности приборов — A+ (и выше), что позволяет значительно сэкономить на электричестве.
Видео:Компрессор воздушный безмасляный Sturm AC93450OLСкачать
Безупречный дизайн
В нашем интернет-магазине доступны для заказа встраиваемые и отдельностоящие холодильники от бренда Korting. Каталог включает в себя одно-, двух- и многокамерные (Side-by-side) приборы. Большой выбор моделей позволяет найти идеальное решение как для классических, так и для современных интерьеров. Популярные цветовые решения — белый, черный, бежевый, золотой и серебристый («нержавеющая сталь»). На всю бытовую технику действует официальная гарантия от производителя (2 года).
Видео:Звук работы безмасляного компрессораСкачать
Технологии, применяемые в современных компрессорах
Технологии, применяемые в современных компрессорах
Компрессор — основа любой холодильной установки, будь то кондиционер, чиллер или оборудование из сферы торгового холода. Энергопотребление компрессора составляет около 90% мощности, потребляемой холодильной установкой в целом. Именно поэтому внимание производителей климатической и холодильной отраслей сосредоточено на технологиях энергосбережения компрессионного оборудования, а также на создании и продвижении новых видов компрессоров.
Инверторные компрессоры постоянного тока
Производительность первых компрессоров, независимо от их вида, не регулировалась вообще или же регулировалась крайне неэффективным способом — за счет перепуска газа (байпаса). Управление холодопроизводительностью установки чаще всего осуществлялось путем включения и выключения компрессора.
В начале 2000-х годов сначала в бытовых сплит-системах, а потом в полупромышленном и промышленном климатическом оборудовании стали внедряться инверторные приводы компрессоров. Они позволяли изменять холодопроизводительность агрегата в соответствии с реальной тепловой нагрузкой в помещении. Помимо повышения холодильного коэффициента такой метод управления увеличивал и срок службы оборудования за счет резкого снижения количества циклов запуска и остановки компрессора. Первые инверторные приводы имели маленькую мощность, что сдерживало их распространение. Со временем были разработаны более мощные устройства, сфера их применения расширялась.
Direct Current Inverter
Следующим шагом стала разработка инверторных компрессоров, работающих от постоянного тока (DC Inverter — Direct Current Inverter). Суть нововведения — повышение энергоэффективности климатического оборудования за счет сокращения числа преобразований электрического тока. Дело в том, что инвертор регулирует производительность компрессора путем изменения частоты тока. Однако напрямую изменить частоту переменного тока невозможно, необходимо сначала превратить его в постоянный, а потом уже сформировать переменный ток нужной частоты. Таким образом, ток проходит двойное преобразование — сначала в устройстве, которое называется выпрямитель, синусоида выпрямляется, а потом в другом устройстве — инверторе — создается новая синусоида с нужными характеристиками.
Двойное преобразование влечет за собой двойные потери, поскольку КПД каждого этапа ниже 100%. Стремление повысить КПД натолкнуло инженеров на мысль отказаться от инвертора в инверторе (каламбур связан с тем, что под словом «инвертор» понимают и устройство для регулирования компрессора в целом, и одну из его составных частей, отвечающую за формирование переменного тока из постоянного) и подать на компрессор постоянный ток.
Регулирование компрессоров постоянного тока осуществляется путем изменения величины действующего напряжения. Питание компрессора осуществляется импульсами постоянной амплитуды, но разной частоты. Изменение длины и периодичности импульсов ведет к снижению действующего напряжения и соответствующему изменению производительности компрессора. Важно отметить, что при изменении действующего напряжения прямо пропорционально снижается потребляемая мощность компрессора, что обеспечивает экономию энергии при неполной нагрузке.
Сегодня инверторные компрессоры постоянного тока широко применяются в бытовых, полупромышленных и прецизионных кондиционерах, наружных блоках мультизональных систем. Более подробно о компрессорах DC Inverter «Мир климата» писал в статье «Вестник УКЦ АПИК: Компрессоры постоянного тока», опубликованной в № 83 (2014).
Спиральные компрессоры
Конструктивно спиральные компрессоры состоят из электродвигателя, вала с эксцентриком и двух спиралей — подвижной и неподвижной. Подвижная спираль совершает поступательно-вращательное движение, благодаря которому обкатывается по поверхности неподвижной спирали. В каждый момент времени две спирали, касаясь друг друга, образуют несколько замкнутых объемов разной величины — тем б’oльших, чем дальше они расположены от центра. По мере движения подвижной спирали полости смещаются к центру, уменьшаясь в объеме. Тем самым достигается сжатие хладагента.
Читайте также: Компрессор danfoss nl10mf r134a
Основное внимание производителей спиральных компрессоров приковано к профилированию спиралей, снижению перетечек, повышению срока службы элементов компрессора. Но есть и более специфические наработки.
Так, для расширения температурных границ работы спиральных компрессоров была предложена технология Enhanced Vapor Injection (EVI). Суть ее заключается в подаче дополнительного потока хладагента в виде перегретого пара в процессе сжатия. Для этого часть жидкости после конденсатора направляют в небольшой теплообменник, где она выкипает и поступает обратно в компрессор.
В свою очередь, спиральные компрессоры помимо отверстий для подачи и нагнетания хладагента оснащаются портом для впрыскивания дополнительного объема хладагента. В спиральных компрессорах газ движется от наружных витков спиралей к внутренним. Впрыскивание дополнительного объема хладагента производится на середине этого пути (рис. 1).
Технология Enhanced Vapor Injection позволяет расширить температурные границы работы спиральных компрессоров в холодное время года до —25°C. Кроме того, по данным компании LG, за счет применения промежуточного впрыска хладагента удается повысить производительность системы на 27%. Технология Enhanced Vapor Injection способствует понижению температуры хладагента на выходе из компрессора, что, в свою очередь, позволяет компрессору работать с более высокой скоростью, а это приводит к увеличению производительности агрегата. Технология Enhanced Vapor Injection применяется также в компрессорах Copeland, Mitsubishi Electric и других.
В спиральных компрессорах новых кондиционеров компании Daikin проработан вопрос снижения перетечек хладагента из зоны с высоким давлением в зону с более низким давлением. Чтобы избежать таких перетечек, подвижная и неподвижная спирали должны быть плотно прижаты друг к другу. Возникает вопрос: как лучше добиться этого прижатия?
Обычно часть хладагента высокого давления на выходе из компрессора направляется в специальную полость снаружи подвижной спирали. Так как давление нагнетания выше, чем среднее давление хладагента между спиралями, то создается сила, прижимающая подвижную спираль к неподвижной. Однако при снижении производительности компрессора снижается давление хладагента на выходе из него, следовательно, становится меньше и прижимающая сила. А ведь для перетечки хладагента достаточно узкой щели. Как только она образуется, эффективность работы компрессора резко падает.
В компании Daikin разработали компрессоры с дополнительной опорной площадкой для подвижной спирали. Чем ниже давление нагнетания, тем больше хладагента проходит через эту площадку. За счет этого улучшается прижимание спиралей, снижается вероятность перетечек. Более подробно об этой технологии читайте в статье «Новые решения в Daikin VRV IV+» в журнале «Мир климата» № 113 (2019).
Эффективность компрессоров может быть повышена и косвенным путем — за счет изменения режима работы других элементов холодильного контура. Примером такого решения может служить технология EMS, применяющаяся в кондиционерах компании Midea.
В Midea изучили, при какой производительности компрессор наиболее эффективен. Выяснилось, что пик коэффициента полезного действия соответствует 50—80%-ной загрузке. Следовательно, нужно сделать так, чтобы компрессор максимально долго работал именно с такой загрузкой. Как этого достичь?
Очевидно, что в режиме 100%-ной тепловой нагрузки на кондиционер компрессор также должен «молотить на полную». Но так ли часто тепловая нагрузка столь велика? Выясняется, что нет. Далее следует анализ работы кондиционера при частичной нагрузке.
Одно из решений, которое выработали инженеры, — повышение температуры хладагента в испарителе при неполной нагрузке на кондиционер. Это позволяет повысить энергоэффективность кондиционера напрямую, ведь чем выше температура испарения, тем выше холодильный коэффициент. Одновременно компрессор выводится на тот самый энергоэффективный режим, что также способствует повышению холодильного коэффициента. По данным Midea, сезонный холодильный коэффициент SEER у такого кондиционера на 10% выше, чем у обычного.
Турбокомпрессоры
Турбокомпрессоры — это относительно новый вид компрессоров, который появился на климатическом рынке около 10 лет назад, а активное распространение получил лишь в последние 2–3 года.
Производительность компрессора, как известно, ограничена частотой вращения вала электродвигателя, которая, в свою очередь, связана с частотой тока в электросети. В России стандартная частота тока составляет 50 герц, или 50 циклов синусоиды в секунду. В минуту это 3000 циклов. Отсюда и стандартные частоты вращения вала электродвигателя — 3000 оборотов в минуту и кратные ей 1500 и 750 оборотов в минуту.
Чтобы компрессор выдавал нужную производительность, у него должен быть достаточный объем рабочей полости. Собственно, производительность компрессора равна произведению объема рабочей полости на частоту вращения вала компрессора. Для повышения мощности компрессора нужно увеличить любой из множителей.
Очевидно, что повышение объема рабочей полости ведет к увеличению габаритов компрессора и снижению его энергоэффективности — чем крупнее машина, тем сложнее следить за утечками и перетечками в ней. Возник вопрос: как повысить частоту вращения вала компрессора? И здесь на помощь пришли наработки из холодильной отрасли и криогеники — турбодетандеры, частота вращения вала которых измеряется десятками тысяч оборотов в минуту. Вскоре технология перекочевала в системы кондиционирования.
Новые агрегаты получили название турбокомпрессоров (турбинных компрессоров). Они характеризуются малым объемом рабочей полости и компактными размерами, но высокой скоростью вращения вала — до 40 000 оборотов в минуту. Шариковые подшипники неспособны эффективно и надежно работать на таких скоростях. В турбокомпрессорах применяются газовые подшипники, в современных моделях — магнитная подвеска. Сжатие осуществляется в рабочих колесах (рис. 2) за счет центробежных сил.
Для работы турбокомпрессоров не требуется масло — вращение вала компрессора происходит целиком в воздухе, трущихся частей нет. Поддержание вала в воздухе обеспечивается за счет магнитных подшипников — двух радиальных (переднего и заднего) и одного осевого (рис. 3). Для обеспечения надежности магнитной подвески в компрессорах предусмотрена система контроля положения вала. В зависимости от зазоров между валом и подшипниками формируется корректирующее магнитное поле, поддерживающее вал в оптимальном положении. Учитывая высокую скорость вращения вала компрессора, проверки положения вала также должны происходить очень часто — около 100 тысяч раз в секунду.
Отсутствие трущихся частей в компрессоре способствует повышению его КПД. Кроме того, отсутствие масла позволяет обойтись без маслосистемы — подогревателей масла, масляных насосов, маслоотделителя, масляного фильтра и других элементов. Наконец, из-за того, что в холодильном контуре хладагент циркулирует в чистом виде без каких-либо примесей, в конденсаторе и испарителе не образуется масляная пленка, снижающая эффективность теплообмена.
Читайте также: Компрессор кпс 01 инструкция по
Значительное повышение скорости вращения вала позволило существенно снизить габариты и массу компрессора. В среднем турбокомпрессоры в 5–9 раз компактнее и легче компрессоров другого вида с аналогичной производительностью. Помимо снижения затрат на изготовление корпуса компрессора сокращаются вес и габариты чиллеров и наружных блоков, соответственно, упрощаются транспортировка и монтаж.
В таблице 1 приведен сравнительный анализ двух чиллеров холодильной мощности 700 киловатт — на базе компрессора винтового типа с инверторным управлением и турбокомпрессора. Применение турбокомпрессоров позволило повысить холодильный коэффициент чиллера на 10% при полной нагрузке и на 22% — при частичной. Кроме того, холодильные машины на базе турбокомпрессоров имеют более низкий уровень шума, в 5,5 раза меньшую массу, занимают в 3 раза меньше места.
Поршневые компрессоры
Сжатие хладагента в поршневых компрессорах осуществляется за счет движения поршня в цилиндре. В тот момент, когда поршень находится в дальнем конце от дна цилиндра, производится всасывание газа. Далее поршень движется по цилиндру, сжимая пары хладагента. По окончании процесса сжатия открывается клапан нагнетания, хладагент направляется в конденсатор.
Современные поршневые компрессоры имеют несколько цилиндров. Обычно их количество четное — 2, 4, 6 или 8, впрочем, у компании Copeland есть компрессоры и с 3 цилиндрами. Наличие нескольких цилиндров позволяет примерно при тех же габаритах компрессора сжимать соответственно в 2, 4, 6 или 8 раз большее хладагента.
Среди новшеств в поршневых компрессорах отметим применение клапанов в форме шайбы вместо традиционных лепестковых. Новая конструкция позволяет существенно снизить величину «мертвого» объема в конце процесса сжатия. Клапаны в форме шайбы предусмотрены, например, на новых поршневых компрессорах линейки Discus от компании Copeland (рис. 4).
Напомним, что под «мертвым» понимают свободный объем, который остается в рабочей полости, когда поршень достигает крайнего положения. По сути, в «мертвом» объеме остается газ, который не ушел в трубопровод нагнетания. При обратном движении поршня этот газ начнет расширяться, занимая часть объема, из-за чего в цилиндр поступит меньше хладагента низкого давления. Основной задачей производителей здесь является минимизация «мертвого» объема.
О модификации клапанных досок в поршневых компрессорах в свое время задумались и в компании Bitzer. Новая линейка компрессоров получила название Ecoline. По данным производителя, холодильный коэффициент агрегатов был увеличен на 12% по сравнению с прошлыми сериями за счет новых клапанных досок, высокоэффективных моторов, а также новой конструкции головки цилиндров, снижающей потери и пульсацию газа на стороне нагнетания. Для компрессоров Bitzer Ecoline применяются адаптированные преобразователи частоты Varipack.
Винтовые компрессоры
Среди винтовых компрессоров наибольшее распространение получила технология «двойной винт». В винтовых компрессорах с одинарным винтом роль винта выполняет центральный ротор. С боков к нему подсоединяются шестерни-сателлиты, вращающиеся в перпендикулярном относительно центрального ротора направлении. Пары хладагента движутся вдоль центрального ротора. До контакта с сателлитом хладагент имеет низкое давление (давление всасывания), после сателлита — высокое давление (давление нагнетания).
Двухвинтовой компрессор оснащен двумя роторами — ведущим, подключенным к электродвигателю, и ведомым, вращающимся за счет ведущего (рис. 5). Роторы вращаются в одной связке параллельно друг другу, хладагент движется вдоль роторов. В направлении движения хладагента рабочая полость между роторами уменьшается в объеме, за счет чего сжимается хладагент.
Компрессоры с двойным винтом имеют более высокую производительность и эффективность, что и определило их наибольшее распространение. Для дальнейшего повышения их энергоэффективности при частичной загрузке винтовые компрессоры оснащают частотными приводами. Кроме того, усилия инженеров сосредоточены на оптимизации различных узлов винтовых компрессоров.
Так, в компании Bitzer особое внимание уделяют профилю роторов, работе подшипников, устройству золотниковых клапанов. Действительно, от качества прилегания роторов зависит величина перетечек между зонами с высоким и низким давлением. При появлении зазоров перетечки возрастают, при слишком плотном прилегании возможны заклинивание роторов и останов компрессора. Здесь важен разумный баланс. В идеале зазор между винтами должен быть равен толщине масляной пленки при полном отсутствии перекоса роторов. Именно к этому и стремятся производители.
С точки зрения регулирования холодопроизводительности отметим технологии двухступенчатого регулирования за счет смещения точки всасывания. Это позволяет выйти на 75%-ный и 50%-ный режим работы. Кроме того, в компрессорах Bitzer применяется регулирующий поршень, обеспечивающий плавный пуск компрессора и его работу со сниженной производительностью (рис. 6).
По сути, речь идет о регулировании производительности за счет изменения объемного отношения. Напомним, что объемное отношение — это отношение объема всасывания к объему нагнетания. Обычно оно определяется конструкцией компрессора и является постоянной величиной для каждой модели.
В новых компрессорах возможно изменение объемного отношения за счет изменения (увеличения) зоны нагнетания при том же объеме зоны всасывания. Уменьшение объемного отношения приводит к снижению коэффициента сжатия, а значит, к снижению холодопроизводительности системы и нагрузки на компрессор.
Винтовые компрессоры для холодильной техники отличаются от аналогов из климатической отрасли способностью работать не только с фторуглеродными хладагентами, но и с углеводородами, углекислым газом, аммиаком и другими рабочими веществами, часть из которых плохо «уживается» с различными металлами, применяемыми в электротехнике.
Например, при контакте аммиака и меди, использующейся в обмотках электродвигателей, образуются соли и аммиачный комплекс меди. Во избежание этого приходится применять алюминиевые обмотки, несмотря на то что это приводит к снижению ресурса электродвигателя и более интенсивному его нагреву.
Заключение
Будучи самым энергоемким и дорогостоящим элементом холодильного контура, компрессор и в будущем будет привлекать к себе внимание инженеров холодильной отрасли. Современные агрегаты отличаются не только высоким качеством изготовления элементов, но и «умной» автоматикой, регулирующей работу. Примером тому могут послужить турбокомпрессоры с частотой вращения вала до 40 000 оборотов в минуту и необходимостью автоматического контроля положения вала 100 000 раз в секунду.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🎥 Видео
Компрессоры от Denzel / Как они устроены и какой выбрать под свои задачи?Скачать
Тихий китайский компрессор для нейлера #инструмент #строительство #tools #компрессорСкачать
Безмасляный воздушный компрессор от DENZEL 😎Скачать
Производительность компрессора Ремеза 200LB 40 Fubag B5200/200CT4 Fiac AB 200/515Скачать
Одноразовый безмасляный компрессор sturmСкачать
Безмасляный компрессор Metabo Basic 280-50 OFСкачать
Компрессор для аэрографаСкачать
сравнение производительности компрессоровСкачать
Какой компрессор лучше? Достоинства, недостатки, сравнение компрессоров.Скачать
Воздушный компрессор с высокой производительностьюСкачать
Безмасляный компрессор DENZEL 🔧Скачать