Безколлекторный двигатель (прямоприводной электродвигатель постоянного тока, вентильный двигатель, электронный двигатель) вы встретите в приводах жестких дисков (HDD), в лазерном принтере он применяется для перемещения лазерного луча и для механизма протяжки, все вентиляторы (и блока питания и процессора) имеют подобный принцип работы. Кроме того, этот двигатель вы встретите и в бытовой технике – в любом магнитофоне, видеомагнитофоне и видеоплеере, видеокамере и т.д. Одним словом, там, где требуется постоянная, высокая и стабильная скорость вращения – там применяются безколлекторные электродвигатели.
Этот тип двигателя характеризуется следующими преимуществами:
— малая неравномерность мгновенной скорости вращения
— низкий уровень акустических шумов
— небольшие габариты, масса, потребляемая мощность
В безколлекторном двигателе на роторе расположены постоянные магниты, создающие магнитный поток. Эти магниты выполнены чаще всего в виде многополюсного кольцевого магнита. Обмотки статора являются неподвижными, т.е. получается обращенная конструкция (рис.1).
Вращающий момент в двигателе создается в результате взаимодействия магнитного потока в промежутке между полюсами магнита ротора и основанием статора с проводниками обмотки, по которым протекает электрический ток. Управление коммутацией катушек обмотки статора в зависимости от положения полюсов магнита ротора осуществляется специальной схемой (драйвером) по сигналам датчиков положения ротора. На практике нашли применение двухфазные и трехфазные двигатели. Двухфазные — в вентиляторах, а трехфазные в различных двигателях. Возможные схемы включения обмоток приводятся на рис.2.
В вентильных безколлекторных двигателях магнит ротора имеет, как правило, 6-9 полюсов. Магнит изготавливают из магнитотвердых материалов на основе порошка феррита различных металлов. Катушки каждой фазы имеют многослойную намотку одним или двумя проводами с числом витков 60. 100. Катушки статора после намотки пропитывают лаком, получая монолитную безкаркасную обмотку и приклеивают ее к печатной плате, расположенной на основании двигателя. Однако, для усиления магнитного потока статора часто применяют катушки на магниторпроводе, т.е. получают таким образом каркас для катушек. Большое число катушек статора, как и полюсов ротора, способствует равномерности скорости вращения, однако увеличение их числа приводит к усложнению всей конструкции и удорожанию узла.
Так как двигатель должен вращаться с постоянной скоростью, необходимо обеспечить контроль за его скоростью вращения. Для этих целей применяется датчик частоты вращения. Этот датчик представляет собой устройство, преобразующее механическое вращение вала двигателя в последовательность импульсов, частота которых пропорциональна скорости вращения. По принципу действия эти датчики можно разделить: на индукционные, гальваномагнитные, оптические. Большее распространение получили первых два типа датчиков.
Примером датчика гальваномагнитного типа является датчик Холла. Модулирующим элементом в этом случае является кольцевой многополюсный магнит ротора. При вращении ротора создается переменный магнитный поток, под действием которого на выходе датчика Холла возникает синусоидальный сигнал, пропорциональный скорости вращения. Для достижения приемлемой амплитуды сигнала зазор между магнитной системой и рабочей поверхностью датчика устанавливается очень малым (десятые доли миллиметра).
Индукционные датчики основаны на индуцировании электрического сигнала в обмотке изменяющимся магнитным потоком (аналог — магнитная головка). Модулирующим элементом этого датчика является постоянный магнит, укрепленный на наружной поверхности ротора, а чувствительным элементом является магнитная головка, закрепленная на печатной плате (рис.3).
Такой тип датчика вы можно было встретить в приводах гибких дисков, только там он выполняет роль датчика начала дорожки (индексный датчик), а не частоты вращения. Еще примером индукционного датчика частоты вращения служит датчик с меандровой обмоткой. В этом случае модулирующим элементом является кольцевой многополюсный магнит ротора, а чувствительным элементом — обмотка в виде меандра, нанесенная печатным способом на плату и расположенная под магнитом ротора (рис. 4). На выходе такого датчика так же формируется синусоидальный сигнал под действием переменного магнитного потока.
Питание обмоток статора осуществляется таким образом, что между намагничивающей силой (создаваемой статором) и магнитным потоком должно сохраняться смещение 90°,30° или 60°. При вращающемся роторе такое положение может сохраниться в результате переключения обмоток статора. Причем при переключении должны выполняться два условия, согласно которым обмотки статора должны переключаться в определенный момент и с заданной последовательностью. Положение ротора при этом определяется с помощью датчиков положения. В зависимости от конструкции двигателя и числа фаз количество датчиков положения ротора меняется от 1 до 3. Не путайте их с датчиками частоты — датчик частоты один, а датчиков положения обычно три. В вентиляторах используется только один датчик положения ротора и даже датчик частоты отсутствует. По сигналам от датчиков положения драйвер двигателя вырабатывает сигналы управления, переключающие обмотки статора. По принципу действия и конструктивному исполнению датчики положения ротора похожи на датчики частоты вращения. Однако, в подавляющем большинстве случаев используются датчики на основе преобразователей Холла. Холловские датчики положения ротора располагаются внутри шпинделя двигателя и в непосредственной близости от магнита ротора. В зависимости от типа применяемых микросхем холловских датчиков, на их выходе формируется синусоидальный сигнал (датчик линейного типа) или импульсный сигнал (релейного типа). В некоторых случаях один из датчиков положения ротора может использоваться еще и в качестве датчика частоты вращения, т.е. выполняет двойную функцию.
Драйверы безколлекторных двигателей.
Для управления безколлекторными двигателями применяются специальные микросхемы — драйверы двигателя. Эти микросхемы выполняют следующие функции:
— усиление и обработка сигналов с датчиков положения ротора
— усиление и обработка сигнала от датчика частоты вращения
— формирование сигналов коммутации обмоток статора
Читайте также: Лодочные моторы руководства пользователя
— стабилизация частоты вращения
Условно микросхемы драйверов можно разделить на мощные и маломощные. У маломощных — двигатель подключается через транзисторные усилительные ключи, например микросхема AN8261 (рис. 5). У мощных — обмотки статора подключаются непосредственно к выводам микросхемы и в качестве примера такого драйвера можно привести микросхему AN8245K (рис. 6).
На вход микросхемы подаются сигналы от датчиков положения ротора и от датчика частоты вращения. В большинстве микросхем имеется входной сигнал START/STOP для включения и выключения двигателя. Так как микросхема поддерживает скорость вращения стабильной, то сигнал от датчика скорости вращения сравнивается с сигналом опорной частоты. Сигал опорной частоты представляет собой синусоидальное напряжение, формируемое либо кварцевым (емкостным) резонатором, либо ведущей микросхемой (например микропроцессором). Сигнал частоты вращения обычно обозначается FG. Имеются исключительно ведомые драйверы двигателей, которые не стабилизируют частоту вращения, а работают с частотой, задаваемой ведущей схемой, поэтому такие драйверы просто усиливают сигнал датчика скорости вращения и выдают его на ведущую микросхему и, кроме того, они не имеют входов опорной частоты.
Рис. 5.
Описание контактов микросхемы AN8261.
Обозначение
- Эксперимент с шаговым двигателем Mitsumi от лазерного принтера.
- Подпишитесь на автора
- Подпишитесь на автора
- Я собрал 3D-принтер за 8000 рублей. Вы тоже можете
- Перед тем, как отдать свои кровные
- Механика
- Корпус
- Направляющие (валы)
- Подшипники
- Пластиковые детали
- Ремни, шкивы, шпильки и прочая мелочь
- Электроника
- Шаговые двигатели
- Плата управления
- Драйвера шаговых двигателей
- Дисплей
- Хотэнд и механизм подачи пластика
- Столик, пружины, стекло, концевики
- Блок питания
- И сколько вышло?
- 💡 Видео
Видео:Моторчик от принтера для сверлилкиСкачать
Эксперимент с шаговым двигателем Mitsumi от лазерного принтера.
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Как-то раз достался мне (абсолютно безвозмездно) хладный труп лазерного принтера.
Принтер был разобран на органы, ценного и полезного для rep-rap-а в нем ничего не нашлось, кроме пожалуй шагового двигателя Mitsumi M49SP-1. Польза в котором сомнительная.
Погуглил, двигатель вроде достаточно мощный. Один весомый минус — шаг в 7,5 градусов.
После раздумий куда его применить, пришла в голову мысль попробовать его в качестве привода экструдера принтера. В качестве эксперимента. Нормальные, обычные Nema17 шаговики у меня есть в некотором количестве,
но вот захотелось поэкспериментировать. Стало интересно, мысль овладела головой и руками.
Еще подумалось что микрошаг 32 ситуацию с шагом в 7,5 градусов слегка улучшит.
Спроектировал во FreeCAD-е и распечатал переходную пластину с закладными гайками м3 с этого мотора на nema17.
Родную шестерню не удалял, зубчики достаточно острые и по идее должны вполне цепляться за пруток.
Распечатанный экструдер у меня уже был, печатал остатками китайского пла.
С моим принтером пришел такой же, только литой. А модельку случайно нашел на тинге и распечатал в некотором количестве.
Собрал монстр-экструдер воедино.
Ножка из Леруа Мерлен на укосине.
А в катушку распечатал вот такие вставки и стопор.
Ток выставил экспериментально, чтоб мотор крутился и не пропускал шаги под нагрузкой.
Экспериментально определил количество шагов на 1см.
Тестовая печать прямоугольного столба в 2 стенки.
. дала вот такие занимательные артефакты.
Оно даже печатает, но при печати мотор разогрелся.
В общем для прямого привода моторчик явно не годится. ?
Надо попробовать собрать экструдер с редуктором или с ременной передачей.
Прекрасно понимаю что все это блажь и баловство, не заменит этот моторчик хорошо работающий nema17 17hs4401.
Подытожу: не каждый эксперимент удачный, зато в процессе приобретается бесценный опыт ?
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Видео:Как подобрать шаговый двигатель для станка ЧПУ. ШД из принтера, какой подойдет для ЧПУ?Скачать
Я собрал 3D-принтер за 8000 рублей. Вы тоже можете
Неделю назад я рассказывал о возможностях 3D-печати и том, как именно FDM-технология облегчает нашу жизнь. Статья набрала пусть и немного, но вполне достаточно положительных откликов, чтобы продолжать данную тему, а значит цикл материалов можно считать открытым:)
Сразу хотел бы предупредить, что не хочу превращать статьи в дотошное руководство 3D-печатника. Этого добра на просторах рунета предостаточно. Моя же цель — лишь натолкнуть и подсказать варианты, способы и идеи, которые упростят жизнь человека, который заинтересуется этой отраслью.
Ну что, поехали. После вводного экскурса время действовать. Тема сегодняшней статьи — закупка комплектующих.
Видео:С помощью этого метода ВЫ сможете просто подключить двигатель из ПРИНТЕРАСкачать
Перед тем, как отдать свои кровные
Первое предупреждение — будет непросто. Самостоятельная сборка 3D-принтера требует усидчивости и терпения. Я буду счастлив, если у вас все будет получаться с первого раза, но, по собственному опыту скажу, что без ложки дегтя в 3D-печати не бывает.
Перед покупкой комплектующих для самостоятельного построения принтера сразу же хочу отметить, что для нас самое важное — максимально ужатый бюджет.
И дело не совсем в экономии. Лично мне бы очень хотелось, чтобы вы испытали тот восторг, который наступает после печати первой детали на устройстве, которое создано вашими руками.
Собирать будем классическую модель Prusa i3. Во-первых, это максимально бюджетный вариант исполнения принтера. Во-вторых, он очень популярен и найти пластиковые детали для этой модели не проблема.
Наконец, апгрейдить эту модель одно удовольствие. Делать это можно бесконечно долго, но главное, видеть заметные улучшения после вложения очередной сотни-другой рублей.
Видео:🔴 775 Монстр двигательСкачать
Механика
Под «механикой» мы подразумеваем как статичные, так и движущиеся элементы принтера. От правильного выбора механики напрямую зависит качество моделей, которые он способен будет печатать.
Существует буквально сотни всевозможных модификаций и вариантов исполнения того самого принтера Prusa i3. Вариантов замены комплектующих или их аналогов тьма, поэтому всегда можно что-то изменить или исправить.
Читайте также: Буран с мотором от ваз 2109
Видео:Студенты российского вуза разработали вечный двигатель #вечныйдвигатель #изобретенияСкачать
Корпус
На что влияет. Корпус обеспечивает жесткость всей конструкции. Учтите, что во время печати хотэнд будет постоянно перемешаться вверх, вниз, влево, вправо, вперед и назад. Иногда эти движения будут очень резкими и быстрыми, поэтому, чем надежнее будет корпус, тем лучших результатов вы достигните.
Варианты. Чертеж рамы есть в открытом доступе (тут или тут). Дальше остается обратиться в конторы, занимающиеся резкой фанеры, ДСП, акрила или металла.
Из стали 3-4 миллиметра выйдет подороже, потяжелее, но надежнее. Из фанеры 6 – 8 мм дешевле. Есть варианты и из акрила.
Финансовый совет. Готовые варианты рам на AliExpress и Ebay сразу отметайте. Там просят в три-четыре раза большую сумму. Полистайте доски объявлений по месту жительства. Средняя стоимость корпуса из фанеры варьируется в пределах 600 – 1000 рублей. Все, что дороже — от лукавого.
Цена вопроса: 800 рублей (здесь и далее – приблизительная стоимость).
Видео:💡 ГЕНЕРАТОР 220в из частей ПРИНТЕРА 🔨 ( краткий вариант)Скачать
Направляющие (валы)
На что влияет. Плавность хода сопла, ровность слоев.
Варианты. Направляющих для Prusa i3 нужно ровно шесть штук. По две на каждую ось (X, Y, Z). Размеры следующие:
Общепринятый стандарт для валов 3D-принтера — 8 мм. И гнаться за 10 или 12 мм смысла нет. Вес головы хотэнда не такой значительный, что бы на расстоянии в 370 мм гнуть вал.
Хотя, если у вас есть лишние деньги, можно извратиться и купить 12 миллиметровые валы. Вот только подшипники и подгонка пластиковых деталей потом выйдет дороговато.
Финансовый совет. Перфекционистам на заметку: рельсовые направляющие, конечно же, отличная штука. Но их стоимость даже в Китае откровенно пугает. Оставьте эту модернизацию на будущее.
К слову, валы можно купить как на AliExpress (тут или тут), так и по месту с тех же досок объявлений. Самый доступный вариант — отправиться на блошиный рынок и найти на разборке принтеров и старой оргтехники (МФУ, сканеры) шесть нормальных валов.
Главное, вооружитесь штангенциркулем. Все валы должны быть строго одного диаметра. Цена за штуку получится в районе 60 – 70 рублей.
Цена вопроса: 420 рублей (вариант блошинного рынка).
Видео:Почему двигатели самолетов печатают на 3D-принтере? | Индустрия 4.0Скачать
Подшипники
На что влияет. Уровень шума, качество печати, ровность слоев и граней детали.
Варианты. И снова все упирается в бюджет. Можно заказать подшипник в блоке (модель SC8UU, например, тут). Можно просто линейный подшипник LM8UU. Можно остановиться на бронзовых или латунных втулках генератора автомобиля. Главное, подобрать нужный размер.
Наконец, можно заказать подшипники у 3D-печатника, у которого будете покупать детали для своего принтера (об этом ниже). Готовые подшипники всех размеров есть тут.
Запомните, для Prusa i3 вам нужны 12 линейных подшипников.
Финансовый совет. Не спешите заказывать подшпиники в Китае. Не факт, что выйдет дешевле. Варианты по 40 – 60 рублей за штуку можно найти и в «родных краях».
Цена вопроса: 600 рублей.
Видео:Что можно сделать из старого принтера (Полезные запчасти)/Useful parts from old printerСкачать
Пластиковые детали
Самое время обратиться к тем, у кого уже есть 3D-принтер. Поищите объявления «3D печать в вашем городе». Обсудите стоимость печати комплекта деталей для Prusa i3.
Как правило, оценивают за грамм печати, но есть и готовые комплекты. Тянуть это добро из Китая нет никакого смысла.
Цена вопроса: около 1000 рублей, но зависит от наглости печатника.
Видео:Как запустить шаговый двигатель RK2-0419 из лазерного принтера.Скачать
Ремни, шкивы, шпильки и прочая мелочь
Для самостоятельной сборки механики принтера остается совсем немного. По сути, это недорогие детали, рассказывать о которых слишком много не имеет смысла. Поэтому, приведу список.
- ремень GT2 – служит для перемещения хотэнда и столика вдоль осей X и Y. Выглядит вот так. 2 метра хватит с головой.
- шкивы GT 2 — внутренний диаметр 5 мм, количество зубьев (как правило) 20. Надеваются на шаговые двигатели (на два) для перемещения ремня GT2. Достаточно двух штук. Выглядят так.
- шпильки — модные трапецеидальные винты с гайкой не берем. Во-первых, дорого. Во-вторых, бессмысленно. Это не ЧПУ станок. Со скоростями выше попы прыгнуть не получится, поэтому не тратьте деньги. Обычная строительная метровая шпилька диаметром 5 мм для оси Z (разрежем на два) и такая же диаметром 8 мм для закрепления частей корпуса.
- подшипники — два для связки с ремнем GT2. Будут выполнять роль натяжителей. Желательно, чтобы внешний диаметр подшипника был равен внешнему диаметру шкива в области зубьев. Как вариант, но 50 штук вам не нужно, только два.
- гайки, болты, шайбы — в магазине крепежа хорошенько запаситесь болтами M3 размером от 10 до 60 миллиметров. Соответственно, гайки (нужны еще и 8-миллиметровые для шпилек корпуса) и шайбы. Приблизительный список список можно найти тут.
- муфты — будут удерживать шпильки 5 мм по оси Z. Нужно две штуки. Купить можно, например, тут. А можно попросить напечатать 3D-печатника, взяв модель отсюда.
Финансовый совет. Не стремитесь взять самое лучшее. Подходите с умом и проверяйте диаметры. Так, шпильки для Z оптимальны именно 5-миллиметровый. У 8-миллиметровых больший шаг резьбы, что отразиться на качестве печати (будут слишком характерная слоистость).
Гнаться за шкивами для ремня тоже нет смысла. Подойдет обычный подшипник. При покупке включайте фантазию. Вариант «тупо купить по списку» здесь не работает.
Цена вопроса: при большом желании можно легко вписаться в 700 – 800 рублей.
Видео:Только не говори никому.. Как легко можно восстановить жидкокристаллический экран..Скачать
Электроника
Без электроники принтер не поедет и не поймет, чего вы от него хотите. К счастью, цена на комплектующие просела значительно и можно закупиться без удара по семейному бюджету.
Читайте также: Тюнинг 120 мотора ваз
Видео:Как запустить ШАГОВЫЙ ДВИГАТЕЛЬ от ПРИНТЕРА без драйвера? И почему это НЕ работает?Скачать
Шаговые двигатели
Это самая дорогостоящая статья расходов при самостоятельно сборке 3D-принтера. Нужно 5 штук Nema 17. Как правило, беру на 1.7А по току. Их мощности будет предостаточно. Диаметр валов – 5 мм. Присмотреться можно тут.
Да, не забудьте уточнить наличие соединительных проводов, чтобы потом не плясать с паяльником.
Финансовый совет. И снова блошиный рынок и разборка МФУ, принтеров и плоттеров. Поинтересуйте о ценах на шаговые двигатели. Иногда пять движков Nema 17 можно прикупить за смешные 800 – 900 рублей.
Важно: выбирайте движки так, чтобы у них было одинаковое количество шагов на оборот (например, 200). Двигатели без маркировки брать несколько геморройно, поскольку потом замучаетесь подбирать правильные параметры при настройке ПО.
Видео:Шаговый двигатель. Выбираем и тестируем.Скачать
Плата управления
Эталон для Prusa i3: плата Arduino Mega + модуль расширения Ramps 1.4 (например, такой вариант). Это самый доступный и универсальный вариант для управления принтером.
Совет. Обязательно убедитесь, что в наличии есть джемперы (маленькие перемычки контактов). В идеале, их должно быть не менее 18 штук. Если не будет, замучаетесь потом искать их в своем городе, хотя и стоят они рубль за ведро.
Видео:Что можно сделать из старого принтераСкачать
Драйвера шаговых двигателей
Это миниатюрные платки, которые будут управлять шаговыми двигателями. Считаем сколько нужно:
- 2 драйвера A4988 для оси Z (вот такие)
- 1 драйвер A4988 для оси Y
- 1 драйвер A4988 для оси X
- 1 драйвер DRV8825 для экструдера (например, такие)
Можно взять лотом, можно по отдельности. Я специально написал один драйвер DRV8825, поскольку у него максимальное деление шага 1 к 32, что позволяет более точно выдавливать пластик во время печати очень мелких деталей.
Теоретически можно взять и все пять A4988 или комплект из пяти DRV8825. Тут уж решать вам, но один DRV8825 в сборке строго приветствуется.
Совет. Попадете на распродажу, не поленитесь взять парочку драйверов про запас. При первичной сборке есть риск, что один из драйверов обязательно спалите:)
Видео:Как запустить мотор от лазерного принтераСкачать
Дисплей
На нем будем следить за состоянием печати и управлять принтером. Настоящая классика — четырехстрочный LCD2004 за 350 рублей.
Совет. Обязательно берите дисплей с шилдом и шлейфом (по ссылке выше как раз такой). Потратите минимум времени на подключение.
Видео:Напечатали ШЕСТЕРНИ ГРМ на 3D принтере - СРАБОТАЕТ?Скачать
Хотэнд и механизм подачи пластика
Именно в этом блоке происходит магия 3D-печати. Тут греется пруток пластика и выдавливается сквозь миниатюрное сопло. Не буду ходить вокруг да около. Проверенный годами вариант — версия хотэнда V6 с кулером, терморезистором 100к, нагревательным элементом, радиатором, тефлоновой трубкой. Например, такой.
Механизм подачи пластика (будет крепиться на один из двигателей NEMA 17) лучше взять металлический. Во-первых, удобнее собирать, во-вторых, полностью исключен пропуск шагов во время печати.
Видео:Бесколлекторный двигатель от принтера запускСкачать
Столик, пружины, стекло, концевики
Платформа, на которой будет расположена 3D-модель, должна иметь обязательный подогрев. Температуры тут доходят до 100 – 110 градусов по Цельсию в зависимости от типа пластика.
Самый доступный и проверенный временем вариант – MK2 размером 214 х 214 мм. Не забудьте приобрести пружины для столика (нужно 4 штуки). С ними намного легче выставлять уровень сопла.
Сверху столик накрывают обычным стеклом толщиной 3-4 мм. В идеале – зеркалом. Размеры 200 х 200 мм с небольшими скосами по краям для крепежа винтов. Цена вопроса у стекольщика – около 60 рублей, везти из Китая нет смысла.
Концевые выключатели — специальные механические кнопки, которые будут ограничивать размеры стола и «пояснять» электронике где конец рабочей области принтера. Как вариант, недорогие KW12-3. Нужно 3 штуки (по одному на каждую ось).
Видео:Тихие Шаговые Двигатели для 3Д Принтера | Установка и ТестыСкачать
Блок питания
Один из ключевых элементов все электроники – блок питания. Готовый вариант, заточенный на 3D-принтеры, обойдется в 800 – 1200 рублей. Все зависит от мощности блока. Сразу скажу, что 15 А и 12 Вольт для 3D-принтера с двумя экструдерами и одним нагревательным столом будет достаточно.
Финансовый совет. Как вариант, можно задействовать компьютерный БП аналогичной мощности. Б/у вариант обойдется в 200 – 300 рублей, а работать будет также. Единственное, придется немного повозиться с развязкой проводов.
Видео:🌑 ВЕЧНЫЙ ДВИГАТЕЛЬ на 3D принтере Крутой уход из мёртвой зоны Diy Free energy motor Игорь БелецкийСкачать
И сколько вышло?
Проведем приблизительные подсчеты. Рассчитываем самый бюджетный вариант. Учтите, что экономия требует затрат времени — придется побегать.
- Корпус — 800 рублей
- Валы — 420 рублей
- Линейные подшипники — 600 рублей
- Пластиковые детали — 400 рублей
- Мелочь (подшипники, шкивы, шпильки, ремни) — 700 рублей
- Двигатели (б/у разборка) — 900 рублей
- Электроника (столик, плата Arduino + Ramps, 5 драйверов, дисплей, концевики) — 2600 рублей
- Блок питания — 400 рублей
- Набор гаек, болтов, шайб — 150 рублей
- Хотэнд, механизм подачи пластика — 450 рублей
- Про запас — 580 руб
ИТОГО: 7420 руб + 580 руб (на всякий случай) = 8 000 рублей.
Что ж, я обещал, что мы соберем 3D-принтер за 10 000 рублей. И мы это сделали. Да, придется побегать, поискать и потратить время, но моя задача была доказать, что 3D-печать – не так дорого, как может показаться на первый взгляд.
Материал получился очень обширным, но я старался максимально сжать информацию и выделить лишь ключевые моменты, на которые стоит обратить внимание. Надеюсь, у меня получилось.
Если чего не сказал – не судите строго. Я готов поделиться опытом и посоветовать максимально эффективные варианты решения той или иной проблемы по 3D-печати. В данном случае, по закупке комплектующих.
- Правообладателям
- Политика конфиденциальности
💡 Видео
🔑 Как Запустить Бесколлекторный Мотор из Принтера?\ How to run Laser Printer Motor with Power SupplyСкачать
Как выбрать шаговый двигатель? Принцип работы, разновидности.Скачать