Роль масла в компрессорных холодильных установках и устройствах кондиционирования воздуха низкой и средней мощности играет особую роль, поскольку оно находится в постоянном контакте с хладагентом, циркулируя вместе с ним по системе.
Основная задача холодильного масла заключается в обеспечении смазки между механически взаимодействующими частями и удалением тепла в результате трения этих элементов. Он также обеспечивает охлаждение двигателя компрессора.
Масло из холодильной установки захватывается парами хладагента и циркулирует вместе с ним по установке. Масло, в отличие от хладагента, не подвергается фазовым изменениям, происходящим в теплообменниках. Поэтому, желательно, чтобы количество масла, попадающего в установку, было как можно меньше. Масло, захватываемое парами хладагента во время сжатия, уносится в конденсатор, где фреон конденсируется. В этой связи, следует отметить, что каждый производитель масла старается максимально обеспечивает смешиваемость масла с хладагентом, в зависимости от рабочей температуры. Масло следует выбирать на основе смешиваемости, чтобы сформировать жидкую смесь с фреоном. Это облегчит дальнейший движение масла по системе и предотвратит чрезмерное отложение масла в теплообменниках, что приведет к улучшению теплообменных свойств испарителя и конденсатора. Из конденсатора смесь жидкости и хладагента поступает в расширительный клапан, откуда оно поступает в испаритель. В испарителе во время процесса испарения часть масла отделяется, причем, с понижением температуры масло теряет свою текучесть. При сниженной текучести, чтобы масло не оставалось в теплообменнике, необходимо обеспечить правильную скорость движения хладагента для того, чтобы тот подхватывал капли масла и возвращал его обратно в компрессор.
Полностью невозможно избежать присутствия масла в холодильном контуре. Тем не менее, можно обеспечить максимальный возврат масла в компрессор, благодаря использованию правильных конструктивных решений, обеспечивающих этот процесс. Это правильное функционирование трубопровода, с соблюдением соответствующих диаметров, уклонов, геометрии трубопровода, благодаря которым, возможно поддержание соответствующего скорости хладагента. Благодаря этому, можно не беспокоится о возврате масла из контура.
Метод правильной прокладки трубопровода представлен на рисунке. Наклон нагнетательных трубопроводов в 2 ÷ 3% обеспечивает движение масла в направлении потока хладагента, тем самым предотвращая обратный поток масла в сторону компрессора при остановки или работе компрессора на неполной мощности. Жидкостную линию следует располагать в горизонтальном положении (при условии обеспечения необходимой скорости фреона). Горизонтальное положение всасывающего трубопровода в этом случае является неправильным. Для них, необходимо обеспечить уклон в сторону компрессора в 2 ÷ 3% (на 10м, 2 см уклона). В вертикальных участках нагнетательного трубопровода часто наблюдается стекание масла по стенке трубы из-за силы тяжести, вследствие, неправильных гидравлических расчетов. Для предотвращения этого эффекта нужно обеспечить более высокую скорости потока — от 10 до 15 м / с — в зависимости от типа хладагента и масла. Кроме того, необходимо использовать сифоны каждые 2¸3 м на восходящих трубопроводах всасывания и восходящих нагнетания. В холодильных установках, оборудованных компрессором с регулируемой мощностью или в устройствах с несколькими компрессорами с разной производительностью, одна вертикальная труба нагнетания недостаточна. В таких случаях используются две параллельные трубы. Во время небольших нагрузок активна только одна из них, а другая закрыта маслом, собранным в специально созданном сифоне. Однако при работе на полную мощность, масло в сифоне захватывается, и хладагент течет одновременно по обеим линиям. Во время небольших нагрузок активена только одна из них, а другая закрыт маслом, собранным в специально созданном сифоне. Однако, при работе на полную мощность, масло из сифона захватывается хладагентом, и хладагент течет одновременно по обеим линиям. Тем самым, мы повышаем скорость потока газа, и предотвращаем застой масла.
Читайте также: Ниссан патрол 2011 мотор
Видео:Компрессор холодильника - какое масло?Скачать
В холодильных установках с несколькими компрессорами, линия нагнетания должна быть проложены таким образом, чтобы хладагент после компрессора, а с ним и масло не стекало обратно, вовремя остановки компрессора, и чтобы масло, которое покинуло рабочие компрессоры не стекало в нерабочий компрессор. В этом случае, используется нагнетающий коллектор, и обратный клапан (на рисунке не показан) после каждого компрессора.
На выходе из испарителя за местом крепления термодатчика трв, контролирующего работу расширительного элемента, должна быть установлена так называемая «маслоподъемная петля» в которой накапливается масло после испарителя. Благодаря этому устройству внутри трубы, где установлен датчик, нет масла, это предотвращает от сбоев в работе термостатического расширительного элемента. Если линия всасывания проложена с уклоном, сифон не требуется (в некоторой литературы так указано). По мнению автора и не только, сифон нужен всегда, а лучше после сифона сделать подъем трубы вверх, хотя бы на половину высоты испарителя, если у вас нисходящий всасывающий трубопровод. Это предотвратит вас от гидроудара на компрессор при неотрегулированном трв, при негерметичном соленоидном вентиле и т.д.
Если испарители подключены к общему коллектору, трубопроводы должны быть вставлены сверху в коллектор, а из коллектора — петля, идущая снизу в линию всасывания компрессора. Такой способ монтажа исключает взаимное воздействие друг на друга испарителей, соединенных последовательно и возможность попадания в них капель масла с растворенным в них хладагентом.
Современные экологические фреоны требуют применения масел, соответствующих примененных в них компрессоров при соответствующих условиях работы. Правильно подобранное масло, сохраняющее свои физико-химические свойства и термическую стабильность во всем диапазоне работы машины, имеет правильное воздействие на хладагент, обеспечивает правильный уровень смазки компрессора и положительно влияет на циркуляцию масла в системе, что обеспечивает правильное его возвращение вместе с фреоном.
belcool.org
ремонт холодильного оборудования +375-29-1-444-379
Эволюция холода: хладагенты в современных холодильниках
Видео:Какое масло заливать в компрессор? Категории - Компрессорное масло | Холодильное масло | МАРКОНСкачать
Хладагент это рабочее вещество холодильной машины, которое при кипении и в процессе испарения отнимает тепло от охлаждаемого объекта, а затем после конденсации передаёт его окружающей среде.
Современные холодильники в основном компрессионные и, как следует из названия, имеют компрессор (а некоторые модели даже два). Кроме этого, конструкция предусматривает испаритель. Меж ними циркулирует хладагент. Сначала сжатый компрессором хладагент, находясь в газообразном состоянии, поступает в конденсатор длинную зигзагообразную трубку. Там он превращается в жидкость и отдаёт тепло окружающей среде. Через специальный регулирующий вентиль жидкий хладагент поступает в испаритель, который находится внутри теплоизолированной морозильной или холодильной камеры. Там давление падает, он начинает кипеть, испаряется, снова превращаясь в газ, отбирая при этом тепло у окружающего воздуха. Камера холодильника охлаждается. Испарившийся хладагент опять сжимается компрессором и попадает в конденсатор. И так цикл повторяется снова и снова. Этот принцип охлаждения используется в большинстве холодильников уже десятки лет.
1 компрессор; 2 нагнетательный трубопровод; 3 конденсатор; 4 фильтр-осушитель; 5 капиллярная трубка; 6 испаритель холодильной камеры; 7 испаритель морозильной камеры; 8 всасывающий трубопровод» src=»http://pics.rbc.ru/img/cnews/2008/02/15/1.jpg»>
Схема компрессионного холодильника:
1 компрессор; 2 нагнетательный трубопровод; 3 конденсатор; 4 фильтр-осушитель; 5 капиллярная трубка; 6 испаритель холодильной камеры; 7 испаритель морозильной камеры; 8 всасывающий трубопровод
Читайте также: Лодочный мотор гольфстрим в москве
Однако есть и другой тип холодильников, пусть и менее популярный сегодня, абсорбционные. Циркуляция рабочих веществ: абсорбента (воды) и хладагента (как правило, аммиака), имеющих разную температуру кипения при атмосферном давлении, осуществляется посредством абсорбции. Аммиак поглощается водой, получившаяся смесь подогревается с помощью электрического или газового нагревателя. При этом происходит выпаривание аммиака, который, испаряясь, потребляет теплоту камеры холодильника, то есть способствует её охлаждению. Абсорбционные холодильники в основном маленькие, однокамерные. Яркий пример такой техники великолукские холодильники «Морозко».
Схема устройства абсорбционного холодильника
Видео:Компрессор от холодильника, как залить масло и для чего.Скачать
Как всё начиналось
История появления холодильников, конечно, не сравнится с историей цивилизации, но всё-таки насчитывает несколько веков. В древности снег и лёд помогали людям сохранять пищу (этот способ длительного хранения продуктов питания пришёл в Европу из северных широт). У народов, населявших те края, замороженные рыба, оленина и ягоды хранились месяцами. Однако в более тёплом климате нужны были специальные ледяные шкафы, а поставлять лёд для них стоило очень дорого. Те, кто не мог себе это позволить, вынуждены были хранить продукты : квасить капусту, солить мясо, сушить фрукты и грибы. Так продолжалось довольно долго. Постепенно начали проводиться различные исследования, способствующие поиску решения вопроса сохранения пищи. Но прорыва удалось достигнуть только в 19 веке. В 1834 году появилась первая холодильная компрессионная машина. мир и столкнулся впервые с хладагентами. В этой машине использовался диэтиловый эфир.
Серийное производство холодильников в начале XX века активнее всего развивалось в США. Практически во всех машинах того времени в качестве хладагента использовались аммиак, различные эфиры и некоторые другие весьма токсичные и опасные для человека вещества. поломок таких агрегатов и контакта людей, в частности, с аммиаком высокой концентрации нередки были даже смертельные случаи. Поэтому учёные стали искать другие вещества, которые можно использовать в качестве хладагентов. Так появились фреоны.
Один из первых серийных американских холодильников Frigidaire
Воцарение фреонов
Фреоны это химические соединения на основе метана или этана. Их физическое состояние газы без цвета и запаха, безвредные для человека. Первой фреон синтезировала американская компания «Кинетик Кемикалз Инк» в начале годов прошлого века. Эта же фирма и дала название новому веществу. Тогда же было введено его обозначение: латинская буква «R» (по первой букве английского слова Refrigerant) и цифры: код, определяющий свойства. Первый фреон назывался (дифтордихлорметан). Фреон из чистого метана имеет марку , а из этана . Все остальные фреоны получаются смешением этих двух газов и замещением атомов водорода атомами хлора или фтора.
Сейчас в мире синтезировано более четырех десятков различных фреонов, отличающихся по свойствам и химическому составу. Основные требования, которые предъявляются к фреонам, это минусовая температура кипения при атмосферном давлении, конденсация при низком давлении, а также высокая хладопроизводительность. Кроме этого, необходимы высокий коэффициент теплопроводности и теплопередачи. Желательна и низкая стоимость. Таким требованиям лучше других раньше отвечали фреоны R-12 и R-11 (фтортрихлорметан), использовавшиеся обычно в бытовых холодильниках, а также R-22 (дифторхлорметан), применявшийся в низкотемпературных промышленных холодильных установках. Для получения очень низких температур были разработаны хладагенты , и .
Видео:Какое масло можно использовать в компрессоре на R600a? Мнение завода Атлант. Ремонт холодильникаСкачать
Скрытая угроза
Всё шло прекрасно: и производители, и потребители были довольны. К 1976 году объём производства того же достиг почти 340 тысяч тонн. Определённая часть из этого количества предназначалась как раз для холодильных систем, систем охлаждения воздуха, баночек с аэрозолями Но годы прошлого века стали началом «тяжелых времён» для уже привычных фреонов. Ученые, исследовавшие причины нарушения озонового слоя Земли, пришли к выводу, что многие фреоны наносят ему ощутимый вред. Также оказалось, что фреоны участвуют в возникновении парникового эффекта, потому что задерживают инфракрасное излучение, которое испускает земная поверхность, а следовательно, способствуют глобальному потеплению.
Читайте также: Рулевое управление для лодочного мотора лодки пвх
Вообще, «экологическая опасность» фреонов зависит от содержания трех составляющих: хлора, фтора и водорода. Чем меньше атомов водорода, тем дольше фреон не разлагается и не наносит вред окружающей среде. А по мере увеличения числа атомов хлора растёт токсичность и озоноразрушающая способность фреонов. Вред, наносимый такими веществами озоновому слою, оценивается величиной озоноразрушающего потенциала. Чем он больше, тем вреднее фреон. Так, самый распространённый ранее имеет потенциал равный 1, 0,05, а наиболее вредными являются фреоны , , у которых озоноразрушающий потенциал достигает 13.
Чтобы защитить нашу планету от разрушительной деятельности человека, в 1987 году в соответствии со специальной программой ООН вступил в действие «Монреальский протокол по веществам, разрушающим озоновый слой», предусматривающий постепенное сокращение производства и потребления ряда вредных фреонов. Поэтому с тех пор в холодильниках не используют , . В 1992 году на конференции в Копенгагене было принято решение и о прекращении производства озоноопасных фреонов R11, R12 и R502 с 1 января 1996 года. Заменой им стали озонобезопасные хладагенты, такие, как , или (все три: гидрофторуглеродные соединения). Правда, безопасные агенты, например, R134а зачастую не отличаются прекрасными физическими и термодинамическими свойствами, и к тому же стоят довольно дорого, например, килограмм в 7 раз дороже такого же количества обычного . Также используются смеси, из нескольких хладагентов.
Озоновый слой планеты всё ещё под угрозой, хотя за 20 лет, прошедших с подписания монреальского протокола, есть ощутимые позитивные изменения. Фото сделано спутником NASA
Альтернатива фреонам
Видео:Как проверить / заменить / залить масло в холодильном компрессоре? Расклинить. Ремонт холодильниковСкачать
Однако и сегодня постоянно ведутся исследования, учёные пытаются синтезировать новые, максимально экологичные, более качественные по своим свойствам хладагенты. Разработкой альтернативных хладагентов озабочены многие государства, вкладывающие значительные финансовые средства в соответствующие исследования. По оценкам специалистов, за последние шесть лет на синтез новых хладагентов было потрачено свыше 2,4 миллиардов долларов.
Синтезированы хладагенты из пропана (R290), этилена (R1150), пропилена (R1270), изобутана (R600a). Производство холодильников, работающих на изобутане, освоили многие производители, причём не только в Европе или в Америке, но и на просторах бывшего СССР. Например, белорусская фирма Atlant предлагает покупателям модель за 15000 рублей, да и остальные свои модели этот производитель «перевёл» на безопасный изобутан.
Примеры моделей с хладагентом R600A:
Фирмой Du Pont был разработан ряд новых смесей хладогентов, известных под марками SUVA MP, SUVA МР39 (R401A), SUVA MP52 (R401C) и некоторые другие.
Увы, пока говорить о идеальном по своим характеристикам хладагенте рано. Сегодня главное то, что удалось разработать хладагенты безопасные для человека и окружающей среды. Именно они и используются в бытовых холодильниках и кондиционерах. Ну, а дальнейшее их совершенствование дело времени.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
Видео:Установка бу Компрессора - как проверить уровень масла? Как долить масло? Ремонт холодильникаСкачать
🔍 Видео
Можно ли заливать моторное масло в компрессор?Скачать
Как правильно слить масло с мотор-компрессора бытового холодильникаСкачать
Компрессорное масло | Какое масло подходит для воздушных компрессоров?Скачать
Компрессор холодильника: рекуператор маслаСкачать
проверка масла в мотор-компрессореСкачать
компрессор холодильника плюется маслом, эксперимент.Скачать
Замена масла в компрессоре. На что способен компрессор от холодильника. Делаем насос из компрессораСкачать
Распил компрессора холодильника и почему компрессор "плюется" маслом.Скачать
Замена масла в компрессоре холодильника | FUSE MANСкачать
Курсы холодильщиков 20. Проверка/замена масла в компрессореСкачать
Как заправить мотор-компрессор масломСкачать
Как избавиться от доливки масла в компрессор от холодильника.Скачать
⚠️ КАК РАБОТАЕТ КОМПРЕССОР ⚠️ для ХОЛОДИЛЬНИКА ❄️Скачать
Компрессор от холодильника как организовать самомаслосброс в систему и иметь чистый, сжатый воздух!Скачать