Дан цилиндр с заданным радиусом

Авто помощник

Доброго времени суток! В который раз нуждаюсь в вашей помощи.

Создать программу для вычисления площади поверхности и объема цилиндра по принципу «ввод значений -> результат»

Непосредственно формулы (Записать в виде инструкции присваивания):

Помощь в написании контрольных, курсовых и дипломных работ здесь.

Дан цилиндр с заданным радиусом

Записать в виде инструкции присаивания формулы вычисления площади поверхности и объема цилиндра
Need help Записать в виде инструкции присаивания формулы вычисления площади поверхности и объема.

Дан цилиндр с заданным радиусом

Вычисление площади поверхности и объема правильной пирамиды
Вычислить площадь поверхности и объем правильной пирамиды, в основании которой квадрат со стороной.

Вычисление длины окружности, площади круга и объема шара
Ребят помогите написать программу, Задание: Составить программу,которая выводит следующее.

Дан цилиндр с заданным радиусом

Составить алгоритм вычисления объема цилиндра
Составить алгоритм вычисления объема цилиндра V=π*r2*h. заранее благодарю за оказанную помощь)

Содержание
  1. Как найти высоту цилиндра, с помощью данных?
  2. Объем цилиндра формула (через радиус основания и высоту)
  3. S (б.п.) = hP = 2πrh
  4. Формула вычисления объема цилиндра
  5. Способ расчета радиуса цилиндра:
  6. S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)
  7. R = √V / πh
  8. Примеры задач
  9. Через площадь боковой поверхности
  10. Площадь полной поверхности цилиндра через радиус основания и высоту
  11. Вычисление объёма и площади поверхности цилиндра
  12. Как найти объем цилиндра: формула через диаметр и высоту
  13. Объем цилиндра
  14. Объем цилиндра формула (через радиус основания и высоту)
  15. Зная радиус r и высоту h
  16. Формула
  17. Пример
  18. Зная диаметр d и высоту h
  19. Формула
  20. Пример
  21. Формула вычисления объема цилиндра
  22. Введите радиус основания и высоту цилиндра
  23. Примеры задач
  24. Поэтапный расчет объема картонной коробки
  25. Подсчет объема коробки в литрах
  26. Объем цилиндрической полости
  27. Объем прямого цилиндра
  28. Объем цилиндра через площадь основания и высоту цилиндра
  29. Поверхности цилиндра
  30. Сечения цилиндра
  31. Как рассчитать объем цилиндра с помощью калькулятора

Видео:Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)

Как найти высоту цилиндра, с помощью данных?

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Объем цилиндра формула (через радиус основания и высоту)

r — радиус основания цилиндра,

Если внимательно посмотреть на эту формулу, то можно заметить, что

— это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Формула вычисления объема цилиндра

1. Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

Дан цилиндр с заданным радиусом

2. Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R 2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

3. Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

V = π ⋅ (d/2) 2 ⋅ H

Нет сомнений, что все мы со школьных лет помним, как найти высоту цилиндра, формула выглядит так: H=V/πR^2 или 4V/D^2.

Расшифровать формулу просто:

  • V – объем цилиндра;
  • π – 3,14;
  • R – радиус цилиндра;
  • D – диаметр.

То есть получается, что, если разделить объем на площадь основания, получится высота цилиндра.

Можно поступить проще. Для этого нам придется вычислить площадь боковой поверхности искомого цилиндра. Это легко сделать по формуле: S=2πRH. Слегка изменив формулу, получаем: H=S/2πR.

Таким образом, есть уже два способа, которые помогли вспомнить, как найти высоту цилиндра. Это нетрудно, когда перед глазами стройные формулы.

Видео:Объем цилиндраСкачать

Объем цилиндра

Способ расчета радиуса цилиндра:

Дан цилиндр с заданным радиусом

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где V – объем цилиндра, h – высота

Читайте также: Цилиндр тормозной тцр 10 75

Дан цилиндр с заданным радиусом

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где Sb – площадь боковой поверхности, h – высота

Дан цилиндр с заданным радиусом

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где S – площадь полной поверхности, h – высота

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

Видео:11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.

Дан цилиндр с заданным радиусом

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.

Дан цилиндр с заданным радиусом

Решение:
Применим формулу, в которой задействованы заданные величины:

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.

Дан цилиндр с заданным радиусом

Решение:
Используем третью формулу для нахождения неизвестной величины:

Видео:РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Дан цилиндр с заданным радиусом

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:

Видео:🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Площадь полной поверхности цилиндра через радиус основания и высоту

Дан цилиндр с заданным радиусом

Формула для нахождения полной поверхности цилиндра через высоту и радиус основания:

, где π — число Пи (3,14159…), r — радиус основания цилиндра, h — высота цилиндра.

Видео:9 класс, 41 урок, ЦилиндрСкачать

9 класс, 41 урок, Цилиндр

Вычисление объёма и площади поверхности цилиндра

вобщем однокурснику дали задание:Написать консольное приложение, которое позволяло бы выполнять вычисление обьёма и площади поверности цилиндра. Для хранения данных следует использовать структуры. Данные в структуры вводит пользователь с клавиатуры при запуске программы. Для расчёта использовать следующие формулы:
S=2*pi*R*(h+R) — площадь
V=pi*R*R*h -объем
R — радиус основания цилиндра, h — высота (вводить с клавиатуры при запуске программы)

Сложняк.
Подсобите кто чем может не проходите мимо.
До экзамена совсем чуть чуть.
Заранее спасибо.

Помощь в написании контрольных, курсовых и дипломных работ здесь.

Дан цилиндр с заданным радиусом

Вычисление объема и площади поверхности цилиндра
Нужно написать консольное приложение, которое позволяло бы выполнить вычисление объема и площади.

Дан цилиндр с заданным радиусом

Создать функцию нахождения площади поверхности и объема цилиндра. Для возврата значений использовать ссылки.
Создать функцию нахождения площади поверхности и объема цилиндра по заданным радиусу основания и.

Функция: вычисление объема и площади поверхности параллелепипеда
написать функцию которая вычисляет объем и площадь поверхности параллелепипеда

Дан цилиндр с заданным радиусом

Вычисление объёма цилиндра
Всем привет.Вот такую функцию взял с учебника: #include #include #include.

Видео:Построение изометрии цилиндраСкачать

Построение изометрии цилиндра

Как найти объем цилиндра: формула через диаметр и высоту

Видео:🔴 Радиус основания цилиндра равен 15, а его ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Радиус основания цилиндра равен 15, а его ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Объем цилиндра

Дан цилиндр с заданным радиусом

Объем цилиндра равен произведению площади его основания на высоту.

Видео:№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересеченСкачать

№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересечен

Объем цилиндра формула (через радиус основания и высоту)

r — радиус основания цилиндра,

Читайте также: Волга с крайслер нет компрессии во всех цилиндрах

Если внимательно посмотреть на эту формулу, то можно заметить, что

— это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Зная радиус r и высоту h

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3

Зная диаметр d и высоту h

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3

Видео:Куб и цилиндр. Практическая часть. 11 класс.Скачать

Куб и цилиндр. Практическая часть. 11 класс.

Формула вычисления объема цилиндра

1. Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

Дан цилиндр с заданным радиусом

2. Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R 2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

3. Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

V = π ⋅ (d/2) 2 ⋅ H

Видео:Как начертить цилиндр в объемеСкачать

Как начертить цилиндр в объеме

Введите радиус основания и высоту цилиндра

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.

Дан цилиндр с заданным радиусом

, где R – радиус оснований, h – высота цилиндра

Видео:Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см 2 , а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см 2 ⋅ 10 см = 785 см 3 .

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см) 2 ⋅ 6 см = 301,44 см 3 .

Видео:Комбинация тел вращения. Задание 5. ЕГЭ. СТЕРЕОМЕТРИЯСкачать

Комбинация тел вращения. Задание 5. ЕГЭ. СТЕРЕОМЕТРИЯ

Поэтапный расчет объема картонной коробки

    Измерить длину а и ширину b, если дно коробки квадратное, то а=b; Измерить высоту h как расстояние от нижнего до верхнего клапана коробки.

Сначала нужно рассчитать внутренний объем коробки, необходимый для размещения груза. Габаритные размеры груза должны быть на 5–10 мм меньше, чем внутренние размеры гофроупаковки.

V=a*b*h
где a – длина основания (м), b – ширина основания (м),
h – высота коробки (м).

V=S*h
где S — площадь основания коробки, а h — ее высота.

Объем, занимаемый заготовкой (коробкой) (с учетом толщины стенок) рассчитывается для правильного размещения внутри транспортного средства или хранения на складе.
Формула для расчета занимаемого объема:

V=Площадь (S) * толщину листа

*как рассчитать площадь (S) картонной коробки — в этой статье

Тип:Профиль:Толщина (мм):
Трехслойный гофрокартонB3
Трехслойный гофрокартонC3,7
Трехслойный гофрокартонE1,6
Пятислойный гофрокартонBC7
Пятислойный гофрокартонBE4

Дан цилиндр с заданным радиусом

Перемножив полученные значения, получим объем коробки в кубических метрах. Чтобы получить результат в литрах необходимо полученное значение в м 3 умножить на 1000.

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Подсчет объема коробки в литрах

При транспортировке мелких или сыпучих товаров их также пакуют в ящики. Учитывая, что такие предметы и материалы занимают весь объем тары, нужно знать их количество в литрах. Если Вы интересуетесь, как посчитать объем короба в литрах, определяйте литраж следующим образом:

находим кубатуру V=a*b*h =0,3*0,25*0,15=0,0112 м 3 ;

зная равенство: 1 м 3 = 1000 л, переводим полученное значение в литры: V=0,0112 *1000=1,2 л.

Читайте также: Эллипс цилиндра двигателя volvo s80

Видео:Задание 5. ЕГЭ профиль. ЦИЛИНДР.Скачать

Задание 5. ЕГЭ профиль. ЦИЛИНДР.

Объем цилиндрической полости

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Дан цилиндр с заданным радиусом

Цилиндр может быть правильным или наклонным

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Видео:Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Объем прямого цилиндра

Цилиндр – это геометрическое тело, которое сформировано вращением прямоугольника на оси, совпадающей с одним из его сторон. Слово «цилиндр» происходит от греческого слова «kylindros».

Объем цилиндра через площадь основания и высоту цилиндра

Объем цилиндра равен произведению площади основания цилиндра на его высоту.

где:
V – объем цилиндра
H – высота цилиндра
S – площадь цилиндра

Видео:Призма и цилиндр. Практическая часть. 11 класс.Скачать

Призма и цилиндр. Практическая часть. 11 класс.

Поверхности цилиндра

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Сечения цилиндра

Дан цилиндр с заданным радиусом

Дан цилиндр с заданным радиусом

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура

Дан цилиндр с заданным радиусом

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Дан цилиндр с заданным радиусом

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг

Дан цилиндр с заданным радиусом

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс

Дан цилиндр с заданным радиусом

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса

Как рассчитать объем цилиндра с помощью калькулятора

Калькулятор позволяет определить объем цилиндра по одному из 3 вариантов:

  1. площадь основания и высота цилиндра;
  2. радиус основания и высота цилиндра;
  3. диаметр основания и высота цилиндра.

Выберите соответствующий шаг и введите исходные данные в соответствующие поля.

Также важно указать единицы измерения по условиям задачи.

Расчеты будут выполнены автоматически и конвертированы в основные метрические физические величины объема.

Поделиться или сохранить к себе:
Технарь знаток