Даны два цилиндра. Радиус основания и высота первого равны соответственно 3 и 2, а второго — 8 и 9. Во сколько раз объём второго цилиндра больше объёма первого?
Объём цилиндра находится по формуле: Следовательно, отношение объёмов цилиндров:
Даны два цилиндра. Радиус основания и высота первого равны соответственно 9 и 8, а второго — 4 и 9. Во сколько раз объём первого цилиндра больше объёма второго?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём второго цилиндра:
Найдём отношение объёма первого цилиндра ко второму:
Даны два цилиндра. Радиус основания и высота первого равны соответственно 4 и 1, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём второго цилиндра:
Найдём отношение объёма второго цилиндра к первому:
Даны два цилиндра. Радиус основания и высота первого равны соответственно 9 и 3, а второго — 3 и 9. Во сколько раз объём первого цилиндра больше объёма второго?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём первого цилиндра:
Найдём отношение объёма первого цилиндра ко второму:
Даны два цилиндра. Радиус основания и высота первого равны соответственно 2 и 3, а второго — 8 и 3. Во сколько раз объём второго цилиндра больше объёма первого?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём первого цилиндра:
Найдём отношение объёма второго цилиндра к первому:
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 6 и 9, а второго — 9 и 2. Во сколько раз объём первого цилиндра больше объёма второго?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём первого цилиндра:
Найдём отношение объёма первого цилиндра ко второму:
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 9 и 3, а второго — 3 и 9. Во сколько раз объём первого цилиндра больше объёма второго?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём первого цилиндра:
Найдём отношение объёма первого цилиндра ко второму:
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 1, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?
Читайте также: Выбило свечу из цилиндра
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём первого цилиндра:
Найдём отношение объёма второго цилиндра к первому:
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 6 и 5, а второго — 2 и 6. Во сколько раз объём Во сколько раз объём первого цилиндра больше объёма второго?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём первого цилиндра:
Найдём отношение объёма первого цилиндра ко второму:
Видео:🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
Даны два цилиндра радиус основания которого равен
Высота цилиндра равна 3, а радиус основания равен 13.
а) Постройте сечение цилиндра плоскостью, проходящей параллельно оси цилиндра, так, чтобы площадь этого сечения равнялась 72.
б) Найдите расстояние от плоскости сечения до центра основания цилиндра.
а) Пусть OO1 — ось цилиндра. Проведем AB и CD параллельно оси цилиндра. Проведем BD и AC. Так как через две параллельные прямые проходит единственная плоскость, то прямоугольник BDCA — искомое сечение (см. рис.).
б) В этом прямоугольнике одна сторона будет равняться высоте цилиндра, а вторая — хорде окружности, лежащей в основании. Так как то где x — хорда AC. Проведем OH перпендикулярно AC. В силу того, что треугольник ACO равнобедренный, точка H также будет являться серединой AC. Тогда из прямоугольного треугольника, у которого гипотенуза — радиус OC, а один катет — половина этой хорды, находим второй катет OH по теореме Пифагора.
Таким образом, расстояние от центра окружности до сечения равно 5.
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Видео:🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
Даны два цилиндра радиус основания которого равен
Даны два цилиндра. Объём первого цилиндра равен 36. У второго цилиндра высота в 4 раза меньше, а радиус основания в 3 раза больше, чем у первого. Найдите объём второго цилиндра.
Это задание ещё не решено, приводим решение прототипа.
Объём первого цилиндра равен 12 м 3 . У второго цилиндра высота в три раза больше, а радиус основания в два раза меньше, чем у первого. Найдите объём второго цилиндра (в м 3 ).
Пусть объём первого цилиндра равен объём второго — где — радиусы оснований цилиндров, — их высоты. По условию Выразим объём второго цилиндра через объём первого:
Аналоги к заданию № 501880: 517194 517232 Все
Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать
Даны два цилиндра радиус основания которого равен
Даны два цилиндра. Объём первого цилиндра равен 8. У второго цилиндра высота в 4 раза меньше, а радиус основания в 3 раза больше, чем у первого. Найдите объём второго цилиндра.
Это задание ещё не решено, приводим решение прототипа.
Объём первого цилиндра равен 12 м 3 . У второго цилиндра высота в три раза больше, а радиус основания в два раза меньше, чем у первого. Найдите объём второго цилиндра (в м 3 ).
Пусть объём первого цилиндра равен объём второго — где — радиусы оснований цилиндров, — их высоты. По условию Выразим объём второго цилиндра через объём первого:
Аналоги к заданию № 501880: 517194 517232 Все
Видео:Задание 2|ЕГЭ ПРОФИЛЬ| СТЕРЕОМЕТРИЯ| Цилиндр вписан в прямоугольный параллелепипед.Радиус основанияСкачать
Даны два цилиндра радиус основания которого равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 18. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 1296, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 7. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 14 2 = 196, а объем параллелепипеда равен
площадь основания круга пr^2,зачем вы диаметр возводите в квадрат ??
Диаметр является стороной квадрата, лежащего в основании параллелепипеда. Диаметр в квадрате — площадь этого основания.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1,5. Найдите объем параллелепипеда.
Это задание ещё не решено, приводим решение прототипа.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 6. Найдите объем параллелепипеда.
Это задание ещё не решено, приводим решение прототипа.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 8,5. Найдите объем параллелепипеда.
Это задание ещё не решено, приводим решение прототипа.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 9,5. Найдите объем параллелепипеда.
Это задание ещё не решено, приводим решение прототипа.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 2. Найдите объем параллелепипеда.
Это задание ещё не решено, приводим решение прототипа.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 15. Найдите объем параллелепипеда.
Это задание ещё не решено, приводим решение прототипа.
Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.
Высота параллелепипеда равна высоте вписанного в него цилиндра. Основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому площадь основания равна 4, а объем параллелепипеда равен
📹 Видео
Геометрия Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4Скачать
ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). ЦИЛИНДР.Скачать
🔴 Даны два конуса. Радиус основания и образующая ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
Задание 2 ЕГЭ профиль (Стереометрия) по сборнику Ященко 2023Скачать
ЗАДАНИЕ 8 из ЕГЭ_53Скачать
ЕГЭ-2020: Изменение объёма цилиндраСкачать
#130. Задание 8: комбинация телСкачать
🔴 Радиус основания цилиндра равен 15, а его ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
🔴 Даны два конуса. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
ЕГЭ БАЗА 16 номер Радиус основания цилиндра равен 15, а его образующая равна 14Скачать
Задания 11, 13 (часть 4) | ЕГЭ 2024 Математика (база) | Цилиндр, конусСкачать
11 кл.Егэ. Радиус основания цилиндра равен ,2 высота равна 3 .Найдите площадь боковой поверхности циСкачать
Стереометрия, номер 38.1Скачать
ЗАДАНИЕ 2| ЕГЭ ПРОФИЛЬ| Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цилСкачать
Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать
Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.Скачать