Датчика разряжения в цилиндрах

Авто помощник

Датчик разрежения используются для того чтобы производить замеры вакуума и его давления. Замеры можно производить как в агрессивных средах, жидких и газообразных. Вакууметрическое давление непрерывно преобразовывается в электрические сигналы, преобразование происходит при температуре от −54°C до + 350°C.

На мембрану датчика воздействуют преобразователи, измеряется именно разность давлений. В данных устройствах задействуется курант датчика разряжения, который проводит преобразование давления. Преобразование давления контролируемой среды происходит относительно атмосферного давления. Для того чтобы производить преобразование существует специальный вход в виде штуцера, либо отверстия, которое позволяет связывать контролируемую среду с атмосферным давлением.

Датчика разряжения в цилиндрах

Видео:Датчик разрежения поставил правильный диагноз!Скачать

Датчик разрежения поставил правильный диагноз!

На каких ДВС используется

Поскольку каждый двигатель имеет свои индивидуальные особенности, начиная от разного содержания вакуума во впускных коллекторах и заканчивая расхождением в объемах, а также количество цилиндров, с помощью встроенного краника можно произвести настройку датчика на работу с каждым типом двигателя. Одним из главных преимуществ такого прибора является его увеличенный диапазон работы, а также наибольшая чувствительность. Для того чтобы воздух смог пульсировать во впускном коллекторе двигателя внутреннего сгорания, был применен пьезоэлемент. Таким образом, согласующие и усиливающие электронные компоненты, могли уже не использоваться. Причем пьезолемент отличается тем, что может с высокой скоростью отслеживать процессы.

Обычные датчики не способны на такие функции, поскольку пьезоэлемент не искажает сигнал, а с обычными устройствами возникает проблема с тем, что они очень долго восстанавливают нулевую фазу. Из-за того, что простые приборы не успевают восстановить свое исходное положение, то данные о впускном коллекторе двигателя внутреннего сгорания отображаются неверно на осциллограмме.

Датчика разряжения в цилиндрах

Видео:Датчик разряжения в диагностике АВТОСкачать

Датчик разряжения в диагностике АВТО

Главные задачи датчика

Конечно же одной из ключевых задач устройства является отображение данных состояния газораспределительного механизма, но это не все его функциональные особенности. Помимо того, что он производит замеры пульсаций во впускном коллекторе двигателя внутреннего сгорания, он также замеряет пульсации выхлопных и картерных газов. Благодаря этому отображается полный анализ данных о том, в каком состоянии на данный момент находится цилиндропоршневая группа. Поэтому такие проблемы, как пропуски воспламенения в цилиндрах становятся не страшны, поскольку, благодаря полученным данным неисправности можно легко определить.

На данный момент на российском рынке датчик разряжения с пьезоэлементом является уникальным и не имеет даже аналогов, которые смогли бы реализовать настолько точную диагностику. Диагностика строится в виде диаграмм, где отображается положение верхней и нижней точки цилиндров.

Датчика разряжения в цилиндрах

Видео:Хитрый вопрос про Датчик Разряжения.Скачать

Хитрый вопрос про Датчик Разряжения.

Преимущества использования датчика разрежения

Одними из самых главных достоинств использования данного устройства по сравнению с предыдущими аналогами являются:

  • наивысшее реагирование на изменения показателей разряжения во впускном коллекторе двигателя внутреннего сгорания;
  • при необходимости всегда можно отрегулировать его чувствительность;
  • датчик можно подключить, не задействуя напряжение питания, а также без электричества;
  • благодаря удобной конструкции и использованию пьезоэлемента, стоимость существенно сокращается.

Преимущество использования датчика разрежения в том, что для его использования нет необходимости использовать конкретную модель осциллографа, поскольку он универсальный, то подойдет любая. В комплект к устройству предоставляется кабель питания и экранированный кабель разъема BNC, с разъемным корпусом датчика.

Датчика разряжения в цилиндрах

Видео:Датчик давления в цилиндре для мотор-тестера своими рукамиСкачать

Датчик давления в цилиндре для мотор-тестера своими руками

Для чего необходимо использовать прибор

Использование данного устройства заключается в проведении диагностики двигателя по графику пульсации. Перед пользователем предоставляется осциллограмма, где указаны конкретные точки, с помощью которых определяется состояние цилиндропоршневой группы, где на данный момент находится распредвал и коленвал, определение фаз газораспределительного механизма, правильно ли установлено положение зубчатого диска и ДП коленвала. Причем диагностику для открытия и закрытия впускных клапанов есть возможно производить отдельно на каждый цилиндр.

Видео:Датчик разряженияСкачать

Датчик разряжения

Как проводить диагностику

Для того чтобы выполнить диагностику двигателя внутреннего сгорания, датчик разряжения подсоединяется к впускному коллектору, когда двигатель внутреннего сгорания работает без нагрузки в холостую и находится в нормальном температурном режиме. После этого устройство подсоединяем к осциллографу, настраиваем его чувствительность, используя специальный регулировочный винт.

Таким образом, датчик показывает наглядно на рисунке работу поршня, когда он двигается вверх, то отработанные газы выталкиваются.

Видео:Как читать график датчика давления в цилиндре мотор тестера Диамаг2Скачать

Как читать график датчика давления в цилиндре мотор тестера Диамаг2

Видео по теме

Видео:Осциллограмма датчика разряженияСкачать

Осциллограмма датчика разряжения

Датчика разряжения в цилиндрах

©А. Пахомов (CTTeam, Школа Диагностики Алексея Пахомова).

Датчика разряжения в цилиндрах

В своих обучающих курсах я почти не касался одного измерительного датчика, применяемого в мотортестерах. Речь идет о датчике давления/разрежения, имеющего предел примерно плюс-минус 1 Bar. В разных мотортестерах этот датчик имеет различные названия, но давайте в нашем разговоре будем называть его просто «датчик разрежения», потому что чаще всего измерять с его помощью приходится именно разрежение, то есть давление ниже атмосферного.

Итак, датчик разрежения.

Почему же я так мало уделял ему внимания? Дело в том, что обучение автодиагностов должно, с моей точки зрения, базироваться на принципе разумной достаточности. Поэтому нет смысла забивать начинающим голову не слишком важными моментами, требующими, однако, глубокого понимания и интуиции. А датчик разрежения – именно из этой оперы: чтобы его применять, нужно мыслить очень гибко и чувствовать работу двигателя буквально «на пальцах». Тогда получаемая с его помощью информация будет понятна. Но подобным умением могут похвастать лишь опытные диагносты, а никак не новички.

Читайте также: Цилиндр гидроусилителя руля мтз

Вторая причина заключается в отсутствии общепринятых методик анализа осциллограмм, полученных с помощью датчика разрежения. Да, есть более или менее достоверные методики, но даже они не всегда применимы! Тем не менее давайте вспомним и перечислим их.

Очень полезна осциллограмма давления во впускном коллекторе при стартерной прокрутке. Эту проверку делать можно и нужно, с ее помощью легко и быстро обнаруживаются проблемы в механической части двигателя.

Можно оценить пульсации давления в картере двигателя и в выпускном тракте. Пожалуй, все!

Знатоки скажут: но ведь есть методика анализа давления во впускном коллекторе работающего двигателя! Да, есть. Но давайте вспомним, сколько в ней издержек. Начнем с того, что форма пульсаций давления сильно зависит от конструкции впускного коллектора. А это значит, что от двигателя к двигателю она будет менять свой вид. Как быть?

Не спорю, если вы работаете с одними и теми же автомобилями и двигателями (например, только «Газель»), то вид этой осциллограммы вы знаете наизусть и знаете, как выглядят на ней те или иные дефекты. А если сегодня у вас «Газель», завтра Volkswagen, а послезавтра Ford?

Далее, форма осциллограммы давления во впускном коллекторе зависит от точки присоединения датчика к коллектору. Зависит она и от длины соединительного шланга, через который датчик разрежения сообщается с внутренним объемом впускного коллектора.

Несомненно, виртуозы диагностики этот датчик в своей работе применяют, и весьма успешно. И сейчас мы рассмотрим один из интересных примеров его применения.

А вот и он – Volkswagen Passat в кузове B 5 , оснащенный двигателем ARG рабочим объемом 1 , 8 литра. Для своих лет мотор выполнен на высоком техническом уровне: в наличии система переменных фаз газораспределения, целых пять клапанов на цилиндр, система изменяемой геометрии впускного тракта. Одним словом, Фольксваген!

Однако ничто не вечно под Луной, и двигатель однажды огорчил владельца автомобиля нестабильной работой на холостом ходу и потерей мощности. Ну что ж, бывает…

По законам жанра, прежде чем автомобиль попал в руки профессионального диагноста, владелец три месяца скитался по сервисам в поисках помощи. Нужно ли говорить, что на двигателе уже заменены свечи, высоковольтные провода и наконечники, промыты форсунки. Руководствуясь лишь им одним понятной логикой, неизвестные мастера заменили бензонасос, при этом, правда, не поменяв топливный фильтр. Дважды был заменен лямбда-зонд, причем оба раза датчик устанавливался оригинальный. Апофеозом всего этого безобразия стало предложение заменить модуль зажигания.

Подобное предложение переполнило чашу терпения владельца, и он в очередной раз поехал искать, как говорят, «нормальную диагностику».

Итак, автомобиль перед нами. Заводим двигатель. Конечно, замена такого большого количества деталей облегчает нашу работу, однако торопиться не будем. Прежде всего, двигатель явно «подколбашивает» при работе на холостом ходу. Это видно и безо всякого диагностического оборудования. А у среза выхлопной трубы отчетливо прослушиваются характерные хлопки, указывающие на наличие пропусков воспламенения смеси в цилиндрах.

Если вплотную к глушителю поднести ладонь, то явно ощущается, что руку как будто несколько раз отталкивает, а потом один раз всасывает. И это повторяется хаотически. На самом деле рука, поднесенная к глушителю, это изумительный инструмент: опытные диагносты определяют так не только пропуски воспламенения в цилиндрах, но даже и разрушенный каталитический нейтрализатор.

Ну в нашем-то случае с нейтрализатором все в полном порядке, а вот пропуски воспламенения чувствуются, как сказал когда-то поэт, «весомо, грубо, зримо». Руководствуясь здравым смыслом, следующим шагом подключаем сканер и связываемся с блоком управления двигателем. Как бы это ни было странно, не обнаруживаем в его памяти никаких кодов, говорящих о пропусках! Как так? Это же Volkswagen! Неужели блок управления не фиксирует явные пропуски воспламенения в цилиндрах? Ладно, оставим эти рассуждения на потом и займемся поиском причин дефекта.

В принципе, уже все ясно, осталось лишь установить неисправный цилиндр и причину, приведшую к снижению его работоспособности. Напомню, что любое «троение» двигателя может быть вызвано всего тремя причинами:

  • дефекты в системе зажигания;
  • неисправность в механической части, приводящая к снижению компрессии либо реальной степени сжатия;
  • неисправность топливной форсунки проблемного цилиндра.

Последовательность, в которой перечислены причины, выбрана неспроста. Как показывает практика, чаще всего пропуски воспламенения вызваны дефектами в элементах системы зажигания. Вторая по массовости причина – механические дефекты, и чаще всего это прогоревшие клапаны. Ну и последняя, встречающаяся наиболее редко, это форсунки: уход их характеристик наблюдается лишь на автомобилях с приличным пробегом.

Проверяем зажигание

Начнем поиск и прежде всего проверим систему зажигания. Следует заметить, что она здесь не совсем обычная:

Датчика разряжения в цилиндрах

Это система Distributorless Ignition System (DIS), но модуль зажигания хитрый: две катушки объединены в один корпус и установлены прямо на свечи четвертого и третьего цилиндров через наконечники. Модуль прикручен болтами к клапанной крышке, а поверх него располагается коммутатор с огромным радиатором. Ко второму и к первому цилиндрам от катушек протянуты высоковольтные провода. Такая конструкция с точки зрения диагностики неудобна: затруднено снятие осциллограммы высокого напряжения в третьем и четвертом цилиндрах. Сложности добавляют еще и глубокие свечные колодцы.

Читайте также: Гильза цилиндра двигателя внутренний диаметр

Тем не менее после нескольких дополнительных манипуляций снимаем осциллограмму высокого напряжения и анализируем ее.

Во всех четырех цилиндрах форма осциллограммы имеет академический вид: ярко выраженные затухающие колебания после угасания искры, ровная полка горения, время горения составляет около 1 , 15 мс. Какие могут быть претензии к катушкам зажигания, которые прежние мастера чуть было не заменили? На всякий случай проверяем провода визуально – на предмет механических повреждений и следов пробоя и тестером – на отсутствие внутреннего обрыва. Никаких нареканий.

Но трудились не зря. Явно заметно, что напряжение пробоя в первом цилиндре ниже, чем в остальных. Коротко вспомним, от чего зависит напряжение пробоя искрового промежутка свечи. Это очень интегральный параметр, на который влияет целый ряд факторов. И один из самых важных факторов – давление в цилиндре в момент пробоя. Напряжение пробоя во многом зависит именно от него.

Запустив автоматический анализ осциллограммы с выводом результатов в виде графиков, обнаруживаем, что график напряжения пробоя в первом цилиндре располагается значительно ниже остальных:

А такое поведение графика может говорить только об одном: в первом цилиндре в момент искрообразования давление ниже, чем в остальных. Попросту говоря, в первом цилиндре снижена компрессия. Конечно, к такому же результату приведет, например, слишком малый зазор на свече, но свечи проверены и зазор там в норме.

Собственно, задача почти решена. Осталось поработать компрессометром, а лучше пневмотестером: он даст более достоверные результаты.

Развлекаемся

А давайте поэкспериментируем, благо, что клиентов в очереди больше нет, а мотортестер уже установлен под капотом автомобиля! Поработаем тем самым датчиком разрежения и посмотрим, как отображаются пропуски на осциллограммах давления во впускном коллекторе и в выпускном тракте. Попытаемся обнаружить связь между искрой первого цилиндра и отклонениями формы осциллограмм.

Решено! Первым делом соединяем датчик разрежения с полостью впускного тракта. Чем короче используемый для этого вакуумный шланг, тем лучше: будет меньше искажений формы давления. А чтобы видеть момент искрообразования в первом цилиндре, на его высоковольтный провод установим датчик синхронизации. Собственно, он там уже стоит, ведь незадолго до этого снималась осциллограмма высокого напряжения.

Прежде чем приступать к измерениям, вспомним основные моменты, связанные с формой графика давления во впускном коллекторе. Измерение производится при стартерной прокрутке, при этом запуск двигателя должен быть заблокирован, например, путем отключения форсунок. Осциллограмма давления похожа на синусоиду. В случае, когда в механизме газораспределения все исправно, синусоида ровная, а ее пики находятся примерно на одном и том же уровне.

Но если проблема в механизме есть, то график ведет себя так, как мы и получили:

Верхний график красного цвета – это давление во впускном тракте. Нижний график синего цвета показывает моменты искрообразования в цилиндрах. В нашем случае имеет место система DIS, и высокий импульс соответствует искре первого цилиндра, низкий – четвертого.

При стартерной прокрутке система управления двигателем формирует искру практически в ВМТ сжатия соответствующего цилиндра. Поэтому можно утверждать, что в моменты, отмеченные на иллюстрации и соответствующие моментам искрообразования, поршень первого цилиндра находился в ВМТ сжатия.

Коленчатый вал двигателя при прокрутке стартером вращается очень неравномерно. Максимальное замедление вращения происходит в районе ВМТ, причем чем выше компрессия в очередном цилиндре, тем сильнее замедление.

Важный момент. График давления во впускном коллекторе располагается выше или ниже в зависимости от угловой скорости вращения коленчатого вала. При прочих равных условиях, чем выше скорость вращения, тем ниже будет располагаться график давления (что эквивалентно большему значению создаваемого вакуума).

Это означает: если в каком-либо цилиндре компрессия снижена, то угловая скорость коленчатого вала при прохождении ВМТ этого цилиндра будет выше, чем в других, а соответствующий участок графика опустится вниз.

Вернемся к иллюстрации. Розовым фоном на ней выделены участки в окрестности ВМТ сжатия первого цилиндра. Они опустились вниз, значит, угловая скорость коленчатого вала в этот момент была выше, чем в соседних цилиндрах. А это значит, что компрессия в первом цилиндре ниже, чем в остальных. Все!

Еще, конечно, заметно, что и четвертый цилиндр тоже немного «хромает». Но видимо, не до такой степени, как первый, и пропусков воспламенения в нем пока не наблюдается.

Рассуждаем дальше. Снижение значения компрессии в цилиндре может происходить по двум причинам. Первая – это износ или залегание поршневых колец, сюда же можно отнести и прогар поршня. В результате наблюдается сильный прорыв газов из камеры сгорания в картер. Вторая причина – это прогар клапанов, и чаще всего выпускных, как более теплонагруженных.

Давайте посмотрим, как ведет себя давление картерных газов при работе двигателя и выясним, в чем именно заключается дефект первого цилиндра, в кольцах или в клапанах. Вот результат измерения:

В картере двигателя при работе на холостом ходу присутствует небольшое разрежение, вызванное работой системы вентиляции картера. В нашем случае оно составило около 0 , 015 бар. Это нормально. Но главное в другом: на графике отсутствуют периодические, один через три, всплески давления, а это означает, что в первом цилиндре вопросов к кольцам и поршню нет! Это клапан, и вероятнее всего, выпускной.

Читайте также: Клапан электромагнитный volvo fh цилиндра управления кпп

Давайте проведем еще одно интересное измерение. А именно снимем осциллограмму давления отработавших газов. Сопоставив ее с моментами воспламенения, еще раз убедимся в том, что неисправность находится именно в первом цилиндре.

С практической точки зрения смысла в этом нет, ибо мы все уже доказали, но ради эксперимента и в целях самообразования – то, что надо.

Возникает проблема: провод датчика разрежения слишком короток для того, чтобы установить датчик в выхлопную трубу. Как вариант, можно установить ближе к трубе сам мотортестер, но тогда не дотягивается до нужного провода датчик первого цилиндра. А нам очень важно увидеть еще и момент искрообразования! Поэтому берем шланг от пылесоса, плотно одеваем его на выхлопную трубу, подтягиваем к передней части автомобиля и подготавливаем все для измерения.

Разумеется, шланг – причина лишних колебаний столба отработавших газов. Да и сам он тоже вибрирует, поэтому форма осциллограммы несколько страшноватая, но разобраться и сделать нужные выводы вполне возможно:

Видны периодические провалы графика давления, те самые «пух-пух-пух», которые ощущаются рукой и слышны ухом. Осталось выяснить, от какого это цилиндра. Но прежде чем это делать, немного порассуждаем.

Итак, представим себе, что мы установили датчик разрежения в самое начало выпускного тракта, рядом с выпускными клапанами. Ну, на место лямбда-зонда, например. Попробуем понять, как будут соотноситься между собой момент искрообразования и момент максимального давления в выпускном тракте.

Начнем с того, что на холостом ходу (не на всех двигателях, но на большинстве) искра возникает в диапазоне 0 °.. 10 ° перед ВМТ. Здесь все просто.

А когда возникает пик давления отработавших газов? Тут сложнее. Выпускной клапан (опять-таки не на всех двигателях, но на большинстве) открывается в районе 130 … 150 градусов после ВМТ сжатия. Иначе говоря, он открывается на такте рабочего хода. В момент его открытия отработавшие газы находятся под высоким давлением и начинают вырываться из цилиндра, не дожидаясь достижения нижней мертвой точки. Самое интересное то, что к моменту, когда поршень достигает НМТ, 80 % отработавших газов уже покинули цилиндр.

Эта фаза – от момента начала открытия выпускного клапана и до НМТ – называется фазой свободного выпуска. А так как почти вся масса отработавших газов покидает цилиндр за время фазы свободного выпуска, то логично предположить, что максимальное давление в выпускном коллекторе возникает где-то в конце этой фазы.

Иначе говоря, от момента воспламенения до момента максимального давления за выпускным клапаном проходит примерно 180 °, или четверть рабочего цикла двигателя. Это довольно грубый расчет, но в нашем случае такой точности вполне достаточно.

Значит ли это, что отсчитав на графике четверть рабочего цикла от искры некоего цилиндра, мы увидим всплеск (или провал в случае пропуска воспламенения) именно этого цилиндра? В случае, когда мы «сидим» прямо у выпускного клапана – да.

Но мы-то измеряем не у выпускного клапана, а у среза выхлопной трубы! И не просто у среза, а еще и на конце удлиняющего шланга. А ведь давлению-то нужно еще «добежать» до конца шланга, не так ли?

С какой скоростью распространяется волна давления в воздухе? Ответ прост: со скоростью звука, 330 м/с. Конечно, отработавшие газы – это не совсем воздух, но величина будет сравнимая. Шланг имеет длину 4 м, выпускной тракт автомобиля – ну, предположим, 6 м, он ведь от клапанов до среза трубы идет отнюдь не по прямой. Значит, волна давления «добегает» от клапана до нашего датчика разрежения примерно за 30 мс. Эту поправку мы тоже должны внести в измерение!

Возвращаемся к графику, чуть растянем его для удобства и проведем несколько несложных действий.

  1. Устанавливаем измерительные линейки на две соседние искры первого цилиндра и выясняем, что рабочий цикл длился 140 мс (обведено красным слева). Значит, четверть цикла составляет 35 мс.
  2. Несложно понять, что запаздывание графика давления относительно искры составит 35 + 30 = 65 мс.
  3. Устанавливаем одну линейку в момент провала давления, а вторую смещаем влево на 65 мс. Почему влево? Потому что сначала была искра, а через 65 мс появился (или не появился) всплеск давления на конце нашего шланга.
  4. Установив линейки, попадаем практически точно в момент искрообразования первого цилиндра.

Ну что ж, задача решена еще одним способом.

Кто-то скажет: ну и зачем это все? Ведь можно было просто измерить компрессию в цилиндрах. Да, верно. Но пытливый ум диагноста требует своего применения и жаждет интересных рассуждений. Собственно, чем мы и занимались.

А дальше – накатанным путем к мотористу, на разборку двигателя. Вот что там обнаружилось:

Резюмируя, можно сказать следующее. Конечно, датчик разрежения – не самый необходимый диагносту инструмент. Пожалуй, датчик давления в цилиндре гораздо нужнее. К тому же датчик разрежения требует понимания того процесса, который вы пытаетесь им исследовать. Но тем не менее, с его помощью можно решать многие диагностические задачи и значительно облегчать свою работу.

🔍 Видео

Датчик разряжения в диагностике автомобиля.Скачать

Датчик разряжения  в диагностике автомобиля.

Диагностика ГРМ на Subaru Impreza датчиком разрежения и MT ProСкачать

Диагностика ГРМ на Subaru Impreza датчиком разрежения и MT Pro

⚠️ Разбор осциллограммы датчика давления ⚠️Скачать

⚠️ Разбор осциллограммы датчика давления ⚠️

Dx разными осциллографами. Пробуем работать датчиком разряжения Автоскоп, МТПро, Диамаг.Скачать

Dx разными осциллографами. Пробуем работать датчиком разряжения Автоскоп, МТПро, Диамаг.

Разрежение во впускном коллекторе. Часть 1.Скачать

Разрежение во впускном коллекторе. Часть 1.

Датчик разряжения в диагностике автомобиля. Часть 2.Скачать

Датчик разряжения в диагностике автомобиля. Часть 2.

Датчик давления в целиндре. Изготорление и ремонт своими руками.Скачать

Датчик давления в целиндре. Изготорление и ремонт своими руками.

Датчик Разряжения в картере. Мое мнение. + ДДСкачать

Датчик Разряжения в картере. Мое мнение. + ДД

изготовим самодельный датчик давления в цилиндре за 500рСкачать

изготовим самодельный датчик давления в цилиндре за 500р

Почему я не пользуюсь датчиком разряжения...Скачать

Почему я не пользуюсь датчиком разряжения...

Micsig SATO 1004 датчик давления в цилиндре, и датчик разряженияСкачать

Micsig SATO 1004  датчик давления в цилиндре, и  датчик разряжения

Датчик разряжения в диагностике автомобиля. Часть 3.Скачать

Датчик разряжения в диагностике автомобиля. Часть 3.

5. Мотортестер Diamag 2. 2110 часть 2 датчик разряженияСкачать

5. Мотортестер  Diamag 2.     2110 часть 2 датчик разряжения
Поделиться или сохранить к себе:
Технарь знаток