Детали цилиндров из пластмасс

  • Детали цилиндров из пластмасс

Авто помощник

Поликарбонаты обладают ком­плексом ценных свойств: прозрачностью, вырокими механическими показателями, повышенным сопротивлением ударным на­грузкам, высокой теплостойкостью, не­значительным водопоглощением, стабиль­ностью свойств и размеров в интервале температур от —100 до -f- 135 °С. Поли­карбонаты широко используют в машино­строении; они заменяют цветные металлы, сплавы и силикатное стекло.

Из пластмасс изготовляют многие де­тали машин.

1. Корпусные детали — кабины грузо­вых автомобилей, строительных, дорож­ных и других машин; несущие корпусные детали — кузова автомобилей, корпуса ло­док, шахтных вагонеток, ракет, корпуса машин, соприкасающиеся с агрессивными средами; кожухи, крышки, корпуса пере­носных машин и приборов — из стекло­пластов и других материалов, обладающих малой плотностью при достаточной проч­ности, антикоррозионностью, хорошей теп­лоизоляцией, легкостью формования.

2. Зубчатые колеса — из . текстолита, древеснослоистых пластиков, капрона, капролона, полиформальдегида, фенилона.

3. Быстровращающиеся детали (диски и лопатки компрессоров, сепараторы быст­роходных подшипников качения) — из стеклопластов, полиамидов, текстолита, волокнита, обладающих малой плотностью и достаточной прочностью.

4. Детали, работающие на износ при большой площади номинального контакта в условиях смешанного трения (вклады­ши тяжелонагруженных подшипников, на­кладные направляющие),— из текстолита, древесно-слоистых пластиков, капрона, фторопласта-4 и других материалов, об­ладающих высокой износостойкостью, по­ниженными требованиями к смазочному материалу.

5. Тормозные детали и трущиеся де­тали фрикционных муфт — из асбофрик- ционных пластмасс, обладающих повы­шенной износостойкостью и значитель­ными коэффициентами трения при работе всухую.

6. Тела качения фрикционных передач, ременные шкивы — из волокнита, тексто­лита и специальных фрикционных пласт­масс, обладающих повышенным коэффи­циентом трения при малой плотности.

7. Ремни, канаты, тросы — из поли­амидов, полипропилена, полиуретанов, лавсана, обладающих высокой прочностью и гибкостью.

8. Электроизолирующие детали (пане­ли, траверсы, коллекторы электромашин, корпуса электромашин, изоляция кабелей и проводов) — из гетииакса, текстолита, полиэтилена, винипласта, стеклопласти­ков.

Видео:ШИКАРНАЯ ИДЕЯ для литья в гараже, токарный и фрезерный станок больше ненужен. Diy metalСкачать

ШИКАРНАЯ ИДЕЯ для литья в гараже, токарный и фрезерный станок больше ненужен. Diy metal

Из чего делают современные двигатели: новые материалы на службе автопроизводителей

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Детали цилиндров из пластмасс

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Детали цилиндров из пластмасс

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Читайте также: Как цилиндр врезается в цилиндр

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Детали цилиндров из пластмасс

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.

Детали цилиндров из пластмассДетали цилиндров из пластмасс

Видео:Как плавить толстый пластик и делать из него любые деталиСкачать

Как плавить толстый пластик и делать из него любые детали

Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil, в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.

Читайте также: Поршень туго ходит в цилиндре скутер

Детали цилиндров из пластмассДетали цилиндров из пластмасс

Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC), более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.

Детали цилиндров из пластмассДетали цилиндров из пластмасс

Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Детали цилиндров из пластмасс

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Читайте также: Как расточить цилиндр снегохода

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150–200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Видео:Невероятно но это работает! Простой способ литья сложных изделий из алюминияСкачать

Невероятно но это работает! Простой способ литья сложных изделий из алюминия

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.

🎦 Видео

Литье PET пластика в гаражных условияхСкачать

Литье PET пластика в гаражных условиях

Как сделать потерянный пластик своими руками, одноразовая матрица.Скачать

Как сделать потерянный пластик своими руками, одноразовая матрица.

Секреты литья самодельных деталей для мотоцикла. Попробуй сделай сам!Скачать

Секреты литья самодельных деталей для мотоцикла. Попробуй сделай сам!

🔴СЕКРЕТЫ хромирование это легко и простоСкачать

🔴СЕКРЕТЫ хромирование это легко и просто

Мало кто знает ЭТОТ СЕКРЕТ ХОЛОДНОЙ СВАРКИ! Почему мастера не говорят про это!Скачать

Мало кто знает ЭТОТ СЕКРЕТ ХОЛОДНОЙ СВАРКИ! Почему мастера не говорят про это!

Литье пластмасс Ч.1 / Injection of plastics Part 1Скачать

Литье пластмасс Ч.1 / Injection of plastics Part 1

Хромирование в домашних условияхСкачать

Хромирование в домашних условиях

Ремонт пластиковой детали с помощью специального клея для пластика! Устраняем сквозное отверстие!Скачать

Ремонт пластиковой детали с помощью специального клея для пластика! Устраняем сквозное отверстие!

Настоящее гальваническое хромирование пластика в гаражных условиях. FunChromeСкачать

Настоящее гальваническое хромирование пластика в гаражных условиях. FunChrome

Производство деталей из литьевого пластика с использованием матриц из силиконаСкачать

Производство деталей из литьевого пластика с использованием матриц из силикона

Любая шестеренка за 10 секунд! Отличная идея своими руками!Скачать

Любая шестеренка за 10 секунд! Отличная идея своими руками!

СЕКРЕТ РАСКРЫТ! Как разводить мелассу с песком для литья алюминияСкачать

СЕКРЕТ РАСКРЫТ! Как разводить мелассу с песком для литья алюминия

Очистка деталей без дорогостоящей химии и профессионального оборудования.Скачать

Очистка деталей без дорогостоящей химии и профессионального оборудования.

Литье сложной деталиСкачать

Литье сложной детали

Лайфхак Как просто и надежно склеить пластиковые деталиСкачать

Лайфхак Как просто и надежно склеить пластиковые детали

КАК ХРОМИРОВАТЬ ПОВЕРХНОСТЬСкачать

КАК ХРОМИРОВАТЬ ПОВЕРХНОСТЬ

Ремонт пластика своими силами - несколько способовСкачать

Ремонт пластика своими силами - несколько способов
Поделиться или сохранить к себе:
Технарь знаток