- Осевое сечение цилиндра прямого и наклонного. Формулы для площади сечения и его диагоналей
- Геометрическая фигура
- Прямой и наклонный цилиндры
- Осевое сечение прямого цилиндра
- Осевое сечение наклонного цилиндра
- Задача с прямым цилиндром
- Геометрические тела. Цилиндр.
- Формулы нахождения элементов цилиндра.
- Диагональ сечения прямого кругового цилиндра
- Диагональ сечения прямого кругового цилиндра
- Диагональ сечения прямого кругового цилиндра
- 📹 Видео
Видео:Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР. Построение НВ фигуры сечения. Часть 1Скачать
Осевое сечение цилиндра прямого и наклонного. Формулы для площади сечения и его диагоналей
Цилиндр — это симметричная пространственная фигура, свойства которой рассматривают в старших классах школы в курсе стереометрии. Для его описания используют такие линейные характеристики, как высота и радиус основания. В данной статье рассмотрим вопросы касательно того, что такое осевое сечение цилиндра, и как рассчитать его параметры через основные линейные характеристики фигуры.
Видео:Точка, линия на поверхности прямого кругового цилиндра. Сечение плоскостью наклонного цилиндра.Скачать
Геометрическая фигура
Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.
На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.
Здесь отрезок длиной h является его образующей и высотой.
Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.
Видео:№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующейСкачать
Прямой и наклонный цилиндры
Перед тем как переходить к рассмотрению осевого сечения цилиндров, расскажем, какие типы этих фигур бывают.
Если образующая линия перпендикулярна основаниям фигуры, тогда говорят о прямом цилиндре. В противном случае цилиндр будет наклонным. Если соединить центральные точки двух оснований, то полученная прямая называется осью фигуры. Приведенный рисунок демонстрирует разницу между прямым и наклонным цилиндрами.
Видно, что для прямой фигуры длина образующего отрезка совпадает со значением высоты h. Для наклонного цилиндра высота, то есть расстояние между основаниями, всегда меньше длины образующей линии.
Далее охарактеризуем осевые сечения обоих типов цилиндров. При этом будем рассматривать фигуры, основаниями которых является круг.
Видео:Геометрия Площадь боковой поверхности прямого кругового цилиндра равна 20П, высота цилиндра равна 5Скачать
Осевое сечение прямого цилиндра
Осевым называется любое сечение цилиндра, которое содержит его ось. Это определение означает, что осевое сечение будет всегда параллельно образующей линии.
В цилиндре прямом ось проходит через центр круга и перпендикулярна его плоскости. Это означает, что рассматриваемое сечение круг будет пересекать по его диаметру. На рисунке показана половинка цилиндра, которая получилась в результате пересечения фигуры плоскостью, проходящей через ось.
Не сложно понять, что осевое сечение прямого круглого цилиндра представляет собой прямоугольник. Его сторонами являются диаметр d основания и высота h фигуры.
Запишем формулы для площади осевого сечения цилиндра и длины hd его диагонали:
Прямоугольник имеет две диагонали, но обе они равны друг другу. Если известен радиус основания, то не сложно переписать эти формулы через него, учитывая, что он в два раза меньше диаметра.
Видео:Лаб. работа 6. Построение сечения прямого кругового цилиндра фронтально-проецирующей плоскостьюСкачать
Осевое сечение наклонного цилиндра
Рисунок выше демонстрирует наклонный цилиндр, изготовленный из бумаги. Если выполнить его осевое сечение, то получится уже не прямоугольник, а параллелограмм. Его стороны — это известные величины. Одна из них, как и в случае сечения прямого цилиндра, равна диаметру d основания, другая же — длина образующего отрезка. Обозначим ее b.
Читайте также: Изобразите цилиндр радиус основания которого равен 2см
Для однозначного определения параметров параллелограмма недостаточно знать его длины сторон. Необходим еще угол между ними. Предположим, что острый угол между направляющей и основанием равен α. Он же и будет углом между сторонами параллелограмма. Тогда формулу для площади осевого сечения наклонного цилиндра можно записать следующим образом:
Диагонали осевого сечения цилиндра наклонного рассчитать несколько сложнее. Параллелограмм имеет две диагонали разной длины. Приведем без вывода выражения, позволяющие рассчитывать диагонали параллелограмма по известным сторонам и острому углу между ними:
Здесь l1 и l2 — длины малой и большой диагоналей соответственно. Эти формулы можно получить самостоятельно, если рассмотреть каждую диагональ как вектор, введя прямоугольную систему координат на плоскости.
Видео:Построить сечение цилиндра с плоскостью общего положения.Скачать
Задача с прямым цилиндром
Покажем, как использовать полученные знания для решения следующей задачи. Пусть дан круглый прямой цилиндр. Известно, что осевое сечение цилиндра — квадрат. Чему равна площадь этого сечения, если площадь поверхности всей фигуры составляет 100 см2?
Для вычисления искомой площади необходимо найти либо радиус, либо диаметр основания цилиндра. Для этого воспользуемся формулой для общей площади Sf фигуры:
Поскольку сечение осевое представляет собой квадрат, то это означает, что радиус r основания в два раза меньше высоты h. Учитывая это, можно переписать равенство выше в виде:
Теперь можно выразить радиус r, имеем:
Поскольку сторона квадратного сечения равна диаметру основания фигуры, то для вычисления его площади S будет справедлива следующая формула:
Мы видим, что искомая площадь однозначно определяется площадью поверхности цилиндра. Подставляя данные в равенство, приходим к ответу: S = 21,23 см2.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Геометрические тела. Цилиндр.
Цилиндр − это геометрическое тело, которое ограничено цилиндрической поверхностью и 2-мя плоскостями, которые параллельны и пересекают ее.
ABCDEFG и abcdefg — это основания цилиндра. Расстояние между основаниями (KM) – высота цилиндра.
Цилиндрические сечения боковой поверхности кругового цилиндра.
Сечения, которые идут параллельно к основанию, будут являться кругами одного радиуса. Сечения, которые параллельны образующим цилиндра — это пары параллельных прямых (AB || CD). Сечения, не параллельные ни основанию, ни образующим, являются эллипсами.
Цилиндрическая поверхность образуется посредством движения прямой параллельно самой себе. Точка прямой, которая выделена, перемещается вдоль заданной плоской кривой – направляющей. Эта прямая называется образующей цилиндрической поверхности.
Прямой цилиндр – это такой цилиндр, в котором образующие перпендикулярны основанию. Если образующие цилиндра не перпендикулярны основанию, то это будет наклонный цилиндр.
Круговой цилиндр – цилиндр, основанием которого является круг.
Круглый цилиндр – такой цилиндр, который одновременно и прямой, и круговой.
Прямой круговой цилиндр определяется радиусом основания R и образующей L, которая равна высоте цилиндра H.
Призма – это частный случай цилиндра.
Видео:Видеоурок по математике "Цилиндр"Скачать
Формулы нахождения элементов цилиндра.
Площадь боковой поверхности прямого кругового цилиндра:
Площадь полной поверхности прямого кругового цилиндра:
Объем прямого кругового цилиндра:
Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.
Площадь боковой поверхности скошенного цилиндра:
Площадь оснований скошенного цилиндра:
Площадь полной поверхности скошенного цилиндра:
Объем скошенного цилиндра:
Sбок — площадь боковой поверхности;
Видео:Объём цилиндраСкачать
Диагональ сечения прямого кругового цилиндра
В одном основании прямого кругового цилиндра с высотой 9 и радиусом основания 2 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна 9 · 2 = 18. Пусть H — точка пересечения отрезков NM и CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Видео:Построение линии пересечения поверхности цилиндра с проецирующей плоскостиСкачать
Диагональ сечения прямого кругового цилиндра
В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Так сечение перпендикулярно прямой CD, то оно перпендикулярно основанию цилиндра содержащему эту прямую. Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Диагонали прямоугольника равны, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен
Видео:усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать
Диагональ сечения прямого кругового цилиндра
Дан прямой круговой конус с вершиной M. Осевое сечение конуса — треугольник с углом 120° при вершине M. Образующая конуса равна Через точку M проведено сечение конуса, перпендикулярное одной из образующих.
а) Докажите, что полученный в сечении треугольник тупоугольный.
б) Найдите площадь сечения.
а) Пусть треугольник МАВ — искомое сечение, перпендикулярное образующей МК, и пусть Т — точка его пересечения с диаметром, проходящим через точку К. В треугольнике МТК угол К равен 30°. Следовательно,
В треугольнике МТВ образующая конуса Следовательно,
б) Площадь треугольника MBA равна
В одном основании прямого кругового цилиндра с высотой 3 и радиусом основания 8 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна 3 · 8 = 24. Пусть H — точка пересечения отрезков NM и CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:
В одном основании прямого кругового цилиндра с высотой 9 и радиусом основания 2 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.
а) Докажите, что диагонали этого сечения равны между собой.
б) Найдите объём пирамиды CABNM.
а) Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна 9 · 2 = 18. Пусть H — точка пересечения отрезков NM и CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:
Дан прямой круговой цилиндр высотой 9 и радиусом 2. В одном из оснований проведена хорда AB, равная радиусу основания, а в другом основании проведён диаметр CD, перпендикулярный прямой AB. Построено сечение цилиндра плоскостью ABNM, перпендикулярной прямой CD, причём точка C и центр основания цилиндра, содержащего отрезок CD, лежат по одну сторону от плоскости сечения.
а) Докажите, что диагонали четырёхугольника ABNM равны.
б) Найдите объём пирамиды CABNM.
а) Плоскость сечения ABNM перпендикулярна прямой CD, поэтому отрезки AM и BN являются образующими цилиндра. Следовательно, отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.
б) Площадь прямоугольника ABNM равна Пусть H — точка пересечения отрезков NM и CD, O — центр основания цилиндра, содержащего отрезок CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:
📹 Видео
Сечение цилиндра плоскостью общ полож. Section of a cylinder by a plane in general posit. D.Mamatov.Скачать
№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высотуСкачать
РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать
11 класс, 27 урок, Сечения цилиндрической поверхностиСкачать
№544. Из квадрата, диагональ которого равна d, свернута боковая поверхность цилиндра.Скачать
№543. Угол между диагоналями развертки боковой поверхности цилиндра равен φ, диагональ равна d.Скачать
Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндраСкачать
11 класс, 15 урок, Площадь поверхности цилиндраСкачать