Построение аксонометрических проекций начинают с проведения аксонометрических осей.
Положение осей. Оси фронтальной ди-метрической проекции располагают, как показано на рис. 85, а: ось х — горизонтально, ось z — вертикально, ось у — под углом 45° к горизонтальной линии.
Угол 45° можно построить при помощи чертежного угольника с углами 45, 45 и 90°, как показано на рис. 85, б.
Положение осей изометрической проекции показано на рис. 85, г. Оси х и у располагают под углом 30° к горизонтальной линии (угол 120° между осями). Построение осей удобно проводить при помощи угольника с углами 30, 60 и 90° (рис. 85, д).
Чтобы построить оси изометрической проекции с помощью циркуля, надо провести ось z, описать из точки О дугу произвольного радиуса; не меняя раствора циркуля, из точки пересечения дуги и оси z сделать засечки на дуге, соединить полученные точки с точкой О.
При построении фронтальной диметрической проекции по осям х и z (и параллельно им) откладывают действительные размеры; по оси у (и параллельно ей) размеры сокращают в 2 раза, отсюда и название «диметрия», что по-гречески означает «двойное измерение».
При построении изометрической проекции по осям х, у, z и параллельно им откладывают действительные размеры предмета, отсюда и название «изометрия», что по-гречески означает «равные измерения».
На рис. 85, в и е показано построение аксонометрических осей на бумаге, разлинованной в клетку. В этом случае, чтобы получить угол 45°, проводят диагонали в квадратных клетках (рис. 85, в). Наклон оси в 30° (рис. 85, г) получается при соотношении длин отрезков 3 : 5 (3 и 5 клеток).
Рис. 85. Способы построения осей аксонометрических проекций
Построение фронтальной диметрической и изометрической проекций. Построить фронтальную диметрическую и изометрическую проекции детали, три вида которой приведены на рис. 86.
Рис. 86. Комплексный чертеж детали
Порядок построения проекций следующий (рис. 87):
Видео:Изометрическая проекция цилиндра. Чертим вместе.Скачать
1. Проводят оси. Строят переднюю грань детали, откладывая действительные величины высоты — вдоль оси z, длины — вдоль оси х (рис. 87, а).
2. Из вершин полученной фигуры параллельно оси v проводят ребра, уходящие вдаль. Вдоль них откладывают толщину детали: для фронтальной ди-метрической проекции — сокращенную в 2 раза; для изометрии — действительную (рис. 87, б).
3. Через полученные точки проводят прямые, параллельные ребрам передней грани (рис. 87, в).
4. Удаляют лишние линии, обводят видимый контур и наносят размеры (рис. 87, г).
Сравните левую и правую колонки на рис. 87. Что общего и в чем различие данных на них построений?
Рис. 87. Способ построения аксонометрических проекций
Из сопоставления этих рисунков и приведенного к ним текста можно сделать вывод о том, что порядок построения фронтальной диметрической и изометрической проекций в общем одинаков. Разница заключается в расположении осей и длине отрезков, откладываемых вдоль оси у.
В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры, расположенные горизонтально.
Построение аксонометрической проекции квадрата показано на рис. 88, а и б.
Вдоль оси х откладывают сторону квадрата а, вдоль оси у — половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.
Рис. 88. Аксонометрические проекции квадрата: а — фронтальная диметрическая; б — изометрическая
Построение аксонометрической проекции треугольника показано на рис. 89, а и б.
Читайте также: Как разобрать главный тормозной цилиндр чери амулет
Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/2, а по оси у — его высоту h (для фронтальной диметрической проекции половину высоты h/2). Полученные точки соединяют отрезками прямых.
Видео:Как начертить цилиндр в объемеСкачать
Рис. 89. Аксонометрические проекции треугольника: а — фронтальная диметрическая; б — изометрическая
Построение аксонометрической проекции правильного шестиугольника показано на рис. 90.
По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника. По оси у симметрично точке О откладывают отрезки s/2, равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n, полученных на оси у, проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.
Рис. 90. Аксонометрические проекции правильного шестиугольника: а — фронтальная диметрическая; б — изометрическая
Ответьте на вопросы
1. Как располагают оси фронтальной диметрической и изометрической проекций? Как их строят?
2. Какие размеры откладывают вдоль осей фронтальной диметрической и изометрической проекций и параллельно им?
3. Вдоль какой аксонометрической оси откладывают размер уходящих вдоль ребер предмета?
4. Назовите общие для фронтальной диметрической и изометрической проекций этапы построения.
Задания к § 13
Упражнение 40
Постройте аксонометрические проекции деталей, приведенных на рис. 91, а, б, в — фронтальные диметрические, для деталей на рис. 91, г, д, е — изометрические.
Размеры определите по числу клеток, считая, что сторона клетки равна 5 мм.
Видео:Цилиндр, вытянутый вдоль оси Z. Урок33.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать
В ответах дано по одному примеру последовательности выполнения заданий.
Рис. 91. За типе на построение аксонометрических проекций
Упражнение 41
Постройте в изометрической проекции правильные четырехугольную, треугольную и шестиугольную призмы. Основания призм расположены горизонтально, длина сторон основания 30 мм, высота 70 мм.
В ответах дан пример последовательности выполнения задания.
Диметрическая проекция цилиндра как построить
Контрольные задания по теме: эпюр № 6
Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.
Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.
Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.
В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:
— изометрические, когда все три коэффициента искажения одинаковы (kx=ky=kz);
— диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (kx= kz ≠ky);
— триметрические, когда все три коэффициенты искажения не равны между собой (kx≠ky≠kz).
Видео:Задание 38. Как начертить ИЗОМЕТРИЮ усеченного цилиндраСкачать
В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.
В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.
Читайте также: Момент инерции цилиндра пример
Изометрические оси изображены на рисунке 57.
Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О — получают направление оси Х. Таким же образом соединяют точку С с точкой О — получают направление оси Y.
Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.
Построение окружности в прямоугольной изометрической проекции
Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.
Размер большой оси эллипса 1,22d, малой 0,7d, где d — диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ — большая ось эллипса.
Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О1, О2, О3, О4, являющиеся центрами дуг овала (рисунок 61).
Для определения точек сопряжения проводят линии центров, соединяя О1, О2, О3, О4. из полученных центров О1, О2, О3, О4 проводят дуги радиусами R и R1. размеры радиусов видны на чертеже.
Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).
Штриховка и изометрической проекции
Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.
Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.
По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты kx=kz=1, ky=0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.
Видео:Построение изометрии цилиндраСкачать
Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:
На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа – семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.
Читайте также: Что сделать с задирами в цилиндрах
Построение диметрической проекции шестиугольника
Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П1 (рисунок 64).
На оси Х откладываем отрезок равный величине b, чтобы его середина находилась в точке О, а по оси Y – отрезок а, размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.
Построение окружности в диметрии
В прямоугольной диметрии все окружности изображаются эллипсами,
Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей – 0,35 d.
На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).
Через точку О – начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО1 и ОО2, равные по величине 1,06d. Точки О1 и О2 являются центром больших дуг овала. Для определения еще двух центров (О3 и О4) откладываем на горизонтальной прямой от точек А и В отрезки АО3 и ВО4, равные ¼ величины малой оси эллипса, то есть d.
Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 – радиусом до точек А и В (рисунок 67).
Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П2, рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О1, О2, О3, О4 – центры дуг овала (рисунок 68).
Из центров О3 и О4 описывают дугу радиусом R2=О3 М, а из центров О1 и О2 — дуги радиусом R1= О2 N
Штриховка а прямоугольной диметрии
Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).
© ФГБОУ ВПО Красноярский государственный аграрный университет
📺 Видео
Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать
усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать
Построение цилиндра в трех проекциях и его прямоугольной диметрии.Скачать
Построение эллипса по восьми точкам в прямоугольной диметрииСкачать
Виды и изометрия цилиндраСкачать
Построение аксонометрии моделиСкачать
Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать
Часть 1. Изометрическая проекция. (стр. 29)Скачать
Черчение. 8 класс. Мазаева И.М. Изометрия и ДиметрияСкачать
Как начертить овал во фронтальной плоскостиСкачать
Цилиндр, вытянутый вдоль оси X. Урок 35.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать
Диметрические проекции.Скачать
Как начертить конус в объемеСкачать
2 2 3 построение изометрии окружностиСкачать
2 2 1 изометрия по чертежуСкачать