Длинный металлический цилиндр радиусом

Длинный металлический цилиндр радиусом

Авто помощник

Длинный металлический цилиндр радиусом

2018-08-03
Длинный парафиновый цилиндр радиусом $R = 2 см$ несет заряд, равномерно распределенный по объему с объемной плотностью $\rho = 10 нКл/м^ $. Определить напряженность $E$ и смещение $D$ электрического поля в точках, находящихся от оси цилиндра на расстоянии: 1) $r_ = 1 см$; 2) $r_ = 3 см$. Обе точки равноудалены от концов цилиндра. Построить графики зависимостей $E(r)$ и $D(r)$.

Длинный металлический цилиндр радиусом

Используя теорему Остроградского — Гаусса:

$\int EdS = \frac >$
$E_ S_ = \frac > \epsilon >$, где $Q_ = \rho V_ = \rho S_ l = \rho \pi r_ ^ l$ — заряд на выбранной гауссовой поверхности.

$S_ = 2 \pi r_ (r_ + l )$ — площадь поверхности цилиндра причем цилиндр бесконечно длинный: $l \gg r_ \Rightarrow S_ \approx 2 \pi r_ l \Rightarrow$
$E_ = \frac > S_ > = \frac ^ l > 2 \pi r_ l > = \frac > > \Rightarrow E_ = \frac \cdot 0,01 > > = 2,83 В/м$.

Проводим Гауссову поверхность радиуса $r_ $:

$E_ S_ = \frac > \Rightarrow = \frac S_ >$, где $Q = \rho V = \rho Sl = \rho \pi R^ l$ — заряд
$S_ = 2 \pi r_ (r_ + l ) \approx 2 \pi r_ l \Rightarrow$
$E_ = \frac l > 2 \pi r_ l > = \frac > r_ > \Rightarrow E_ = \frac \cdot 0,02^ > \cdot 0,03 > = 7,55 В/м$.

Длинный металлический цилиндр радиусом

Смещение:
$\begin D_ = \epsilon_ \epsilon E_ \\ D_ = \epsilon_ E_ \end \Rightarrow \begin D_ = 8,85 \cdot 10^ \cdot 2 \cdot 2,23 = 50 \cdot 10^ Кл/м^ \approx 50 пКл/м^ \\ D_ = 8,85 \cdot 10^ \cdot 7,55 = 66,7 \cdot 10^ Кл/м^ \approx 66,7 пКл/м^ \end $

Видео:Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.Скачать

Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.

Длинный металлический цилиндр радиусом

Длинный металлический цилиндр радиусом

Длинный металлический цилиндр радиусом

2017-09-30
Сплошной металлический цилиндр радиуса $R = 20 см$ вращается с постоянной угловой скоростью $\omega = 10^ рад/с$. Чему равна напряженность $E$ электрического поля внутри цилиндра на расстоянии $r$ от оси? Какова разность потенциалов $U$ между поверхностью цилиндра и осью вращения? Какова должна быть индукция $B$ магнитного поля, направленного вдоль оси цилиндра, чтобы электрическое поле не возникало?

Читайте также: Гидравлический цилиндр для полуприцепа

При вращении цилиндра свободные электроны за счет центробежного эффекта отбрасываются к поверхности цилиндра, образуя вблизи нее избыточный отрицательный заряд. Это разделение зарядов прекращается, когда возникшее электрическое поле способно сообщать свободным электронам центростремительное ускорение $a = \omega^ r$, т. е. когда $eE = ma$. Отсюда $E = \frac r> $. Напряженность электрического поля с ростом $r$ линейно возрастает, поэтому ее среднее значение $E_ = \frac > = \frac R> $. Значит, $U = E_ R = \frac R^ > = 1,1 \cdot 10^ В$.

Если магнитное поле направлено вдоль оси цилиндра, сила Лоренца, направленная по радиусу, может сама сообщить электронам необходимое центростремительное ускорение: $F_ = ma$. В таком случае электрическое поле не возникает и разделения зарядов не происходит. Учитывая, что $F_ = evB, v = \omega r$ и $a = \omega^ r$, получаем $e \omega Br = m \omega^ r$; значит, $B = \frac = 5,7 \cdot 10^ Тл$.

Разумеется, направление $\vec$ должно быть согласовано с направлением вращения (чтобы сила Лоренца была направлена к оси вращения).
Ответ: $E = \frac r> ; U = 0,11 мкВ, B = 5,7 \cdot l0^ Тл$.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Длинный металлический цилиндр радиусом

Длинный металлический цилиндр радиусом

Длинный металлический цилиндр радиусом

2018-05-14
Длинный диэлектрический цилиндр радиуса $R$ статически поляризован так, что во всех его точках поляризованность $\vec

= \alpha \vec $, где $\alpha$ — положительная постоянная, $\vec $ — расстояние от оси. Цилиндр привели во вращение вокруг его оси с угловой скоростью $\vec $. Найти индукцию $\vec$ магнитного поля в центре цилиндра.

Из-за поляризации в цилиндре присутствует объемный заряд. Плотностью

Поскольку цилиндр в целом нейтрален, поверхностная плотность заряда $\sigma_

$ должна присутствовать на поверхности цилиндра. Она имеет величину (алгебраически)

2 \pi R = 2 \alpha \pi R^ $ или, $\sigma_

Когда цилиндр вращается, устанавливаются токи, которые вызывают магнитные поля. Вклад $\rho_

$ можно рассчитать отдельно, а затем добавить.
Для поверхностного заряда ток (для конкретного элемента)

$\alpha R \cdot 2 \pi R dx \frac = \alpha R^ \omega dx$

Его вклад в магнитное поле в центре

Что касается плотности объемного заряда, рассмотрим окружность радиуса $r$, радиальной толщины $dr$ и длины $dx$.

Ток равен $2 \alpha \cdot 2 \pi r dr dx \cdot \frac = — 2 \alpha r dr \omega dx$

Читайте также: Опель корса три цилиндра замена цепи грм моменты затяжки

Полное магнитное поле, из-за распределения объемного заряда,

$B_ = — \int_ ^ dr \int_ ^ dx 2 \pi r \omega \frac r^ > + r^ )^ > = — \int_ ^ \alpha \mu_ \omega r^ dr \int_ ^ dx (x^ + r^ )^ = — \int_ ^ \alpha \mu_ \omega r dr \cdot 2 = — \mu_ \alpha \omega R^ $
так как, $B = B_ + B_ = 0$

Видео:ЧК_МИФ_ФМЛ_30 _ 3_1_4_7 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ЦИЛИНДРАСкачать

ЧК_МИФ_ФМЛ_30 _ 3_1_4_7  (L2)   ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ЦИЛИНДРА

Длинный металлический цилиндр радиусом

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

Длинный металлический цилиндр радиусом
Рис. 2.11Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток ФЕ через боковую часть поверхности цилиндра равен нулю, т.к . Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Вне плоскостей напряженность поля

Длинный металлический цилиндр радиусом

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. , то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Читайте также: Не разжимается тормозной цилиндр ваз 2114

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Длинный металлический цилиндр радиусом

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Длинный металлический цилиндр радиусом

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16) .

Длинный металлический цилиндр радиусом

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:

Длинный металлический цилиндр радиусом

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при сферическая поверхность будет содержать в себе заряд, равный

где ρ – объемная плотность заряда, равная: ; – объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара

🎦 Видео

Цилиндр ФарадеяСкачать

Цилиндр Фарадея

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Поле равномерно заряженного цилиндраСкачать

Поле равномерно заряженного цилиндра

Физика 10 класс. Поле равномерно заряженной сферыСкачать

Физика 10 класс. Поле равномерно заряженной сферы

Рубидий - металл, который дороже золота.Скачать

Рубидий - металл, который дороже золота.

Таблица Менделеева. Металлические и неметаллические свойства. Радиус атома.Скачать

Таблица Менделеева. Металлические и неметаллические свойства. Радиус атома.

Семинар 11 \ валы под давлениемСкачать

Семинар 11 \\ валы под давлением

Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)Скачать

Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)

Просто о сложном и сложно о простом | цилиндр над множествомСкачать

Просто о сложном и сложно о простом | цилиндр над множеством

Германий - Полуметалл, Создающий СКОРОСТНОЙ ИНТЕРНЕТ!Скачать

Германий - Полуметалл, Создающий СКОРОСТНОЙ ИНТЕРНЕТ!

ЧК_МИФ_ФМЛ_30 _ 3_1_4_4 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ШАРАСкачать

ЧК_МИФ_ФМЛ_30 _ 3_1_4_4  (L2)   ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ШАРА

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Вращающиеся цилиндрыСкачать

Вращающиеся цилиндры

Теорема Гаусса для расчета полей цилиндра (нити) и плоскостиСкачать

Теорема Гаусса для расчета полей цилиндра (нити) и плоскости

Задача №2. Потенциал проводящей сферы.Скачать

Задача №2. Потенциал проводящей сферы.
Поделиться или сохранить к себе:
Технарь знаток