Видео:ЧК_МИФ_ФМЛ_30 _ 3_1_4_7 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ЦИЛИНДРАСкачать
Длинный цилиндр радиусом r равномерно заряжен с объемной плотностью
2018-08-03
Длинный парафиновый цилиндр радиусом $R = 2 см$ несет заряд, равномерно распределенный по объему с объемной плотностью $\rho = 10 нКл/м^ $. Определить напряженность $E$ и смещение $D$ электрического поля в точках, находящихся от оси цилиндра на расстоянии: 1) $r_ = 1 см$; 2) $r_ = 3 см$. Обе точки равноудалены от концов цилиндра. Построить графики зависимостей $E(r)$ и $D(r)$.
Используя теорему Остроградского — Гаусса:
$\int EdS = \frac >$
$E_ S_ = \frac > \epsilon >$, где $Q_ = \rho V_ = \rho S_ l = \rho \pi r_ ^ l$ — заряд на выбранной гауссовой поверхности.
$S_ = 2 \pi r_ (r_ + l )$ — площадь поверхности цилиндра причем цилиндр бесконечно длинный: $l \gg r_ \Rightarrow S_ \approx 2 \pi r_ l \Rightarrow$
$E_ = \frac > S_ > = \frac ^ l > 2 \pi r_ l > = \frac > > \Rightarrow E_ = \frac \cdot 0,01 > > = 2,83 В/м$.
Проводим Гауссову поверхность радиуса $r_ $:
$E_ S_ = \frac > \Rightarrow = \frac S_ >$, где $Q = \rho V = \rho Sl = \rho \pi R^ l$ — заряд
$S_ = 2 \pi r_ (r_ + l ) \approx 2 \pi r_ l \Rightarrow$
$E_ = \frac l > 2 \pi r_ l > = \frac > r_ > \Rightarrow E_ = \frac \cdot 0,02^ > \cdot 0,03 > = 7,55 В/м$.
Смещение:
$\begin D_ = \epsilon_ \epsilon E_ \\ D_ = \epsilon_ E_ \end \Rightarrow \begin D_ = 8,85 \cdot 10^ \cdot 2 \cdot 2,23 = 50 \cdot 10^ Кл/м^ \approx 50 пКл/м^ \\ D_ = 8,85 \cdot 10^ \cdot 7,55 = 66,7 \cdot 10^ Кл/м^ \approx 66,7 пКл/м^ \end $
Читайте также: Как смазать цилиндр суппорта не разбирая
Видео:Урок 224. Напряженность поля неточечных зарядовСкачать
Длинный цилиндр радиусом r равномерно заряжен с объемной плотностью
Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.
Поле бесконечной однородно заряженной плоскости
Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:
где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.
Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).
Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.
Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).
Рис. 2.11 | Рис. 2.12 |
Применим теорему Остроградского-Гаусса. Поток ФЕ через боковую часть поверхности цилиндра равен нулю, т.к . Дляоснования цилиндра
Суммарный поток через замкнутую поверхность (цилиндр) будет равен:
Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:
откуда видно, что напряженность поля плоскости S равна:
Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости
Поле двух равномерно заряженных плоскостей
Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).
Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .
Вне плоскостей напряженность поля
Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).
Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):
Механические силы, действующие между заряженными телами, называют пондермоторными.
Тогда сила притяжения между пластинами конденсатора:
где S – площадь обкладок конденсатора. Т.к. , то
Читайте также: Wi fi видеокамера цилиндр плюс 2мп камера для дома tantos
Это формула для расчета пондермоторной силы.
Поле заряженного бесконечно длинного цилиндра (нити)
Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).
Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.
Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.
Следовательно, поток вектора через рассматриваемую поверхность, равен
При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда
Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).
Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.
Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком
Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16) .
В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:
Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).
Поле заряженного пустотелого шара
Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).
Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда
Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:
Читайте также: Задний тормозной цилиндр 1111 артикул
Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.
Поле объемного заряженного шара
Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:
Но внутри шара при сферическая поверхность будет содержать в себе заряд, равный
где ρ – объемная плотность заряда, равная: ; – объем шара. Тогда по теореме Остроградского-Гаусса запишем:
Таким образом, внутри шара
🔍 Видео
Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.Скачать
Поле равномерно заряженного цилиндраСкачать
Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать
ЧК_МИФ_ФМЛ_30 _ 3_1_4_4 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ШАРАСкачать
Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.Скачать
Цилиндр крутится - вихревое электрическое поле мутится? | Олимп | Дикая ботва №2Скачать
Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать
ЭЛЕКТРОСТАТИКА.Задачи на применение теоремы Гаусса. 2022-2Скачать
Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)Скачать
43. Применение теоремы ГауссаСкачать
Теорема Гаусса для расчета полей цилиндра (нити) и плоскостиСкачать
Разбор контрольной версия 2Скачать
Лекция 1-4 Теорема Гаусса Формулировка и примерыСкачать
НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полейСкачать
ЧК_МИФ /ЛИКБЕЗ/ 3_1_4 Теорема Гаусса ( Задача на поле цилингдрически симмтеричного распределения)Скачать
45. Электрическое смещениеСкачать
Как выучить Химию с нуля за 10 минут? Принцип Ле-ШательеСкачать