Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Авто помощник

Видео:3.149Скачать

3.149

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

2018-05-14
Длинный цилиндр радиуса $a$, заряженный равномерно по поверхности, вращается вокруг своей оси с угловой скоростью со. Найти энергию магнитного поля, приходящуюся на единицу длины цилиндра, если линейная плотность заряда цилиндра равна $\lambda$ и $\mu = 1$.

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Когда цилиндр с линейной плотностью заряда $\lambda$ вращается с круговой частотой $\omega$, плотность поверхностного тока (заряд / длина $\times$ время) $i = \frac $.

Направление поверхностного тока является нормальным к плоскости рисунка при $Q$, а вклад этого тока в магнитное поле в P равно

где $\vec $ — направление тока. По величине, $| \vec \times \vec | = r$, так как $\vec $ нормаль к $\vec $, а направление $d \vec $, показано на рис.

Это компонент, $d \vec _ $ исчезает из-за цилиндрической симметрии. Компонент, который остается,

где мы использовали $\frac > = d \Omega$ и $\int d \Omega = 4 \pi$, общий телесный угол около любой точки

Магнитное поле обращается в нуль вне цилиндра. Полная энергия на единицу длины цилиндра равно,

Видео:Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.Скачать

Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

Читайте также: Расточка резьбы в блоке цилиндров

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью
Рис. 2.11Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток ФЕ через боковую часть поверхности цилиндра равен нулю, т.к . Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Вне плоскостей напряженность поля

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. , то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Читайте также: Что такое бочка в цилиндре

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16) .

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:

Длинный цилиндр радиусом равномерно заряжен по поверхности с плотностью

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при сферическая поверхность будет содержать в себе заряд, равный

где ρ – объемная плотность заряда, равная: ; – объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара

📹 Видео

ЧК_МИФ_ФМЛ_30 _ 3_1_4_7 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ЦИЛИНДРАСкачать

ЧК_МИФ_ФМЛ_30 _ 3_1_4_7  (L2)   ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ЦИЛИНДРА

Урок 224. Напряженность поля неточечных зарядовСкачать

Урок 224. Напряженность поля неточечных зарядов

ЧК_МИФ /ЛИКБЕЗ/ 3_1_4 Теорема Гаусса ( Задача на поле цилингдрически симмтеричного распределения)Скачать

ЧК_МИФ /ЛИКБЕЗ/  3_1_4 Теорема Гаусса ( Задача на  поле цилингдрически симмтеричного распределения)

ЧК_МИФ_ФМЛ_30 _ 3_1_4_4 (L2) ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ШАРАСкачать

ЧК_МИФ_ФМЛ_30 _ 3_1_4_4  (L2)   ПОЛЕ РАВНОМЕРНО ЗАРЯЖЕННОГО ШАРА

Поле равномерно заряженного цилиндраСкачать

Поле равномерно заряженного цилиндра

Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)Скачать

Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)

ЧК_МИФ РАЗБОР ЗАДАЧИ О РАВНОМЕРНОМ ДВИЖЕНИИ ЭЛЕКТРОНА ВДОЛЬ ЗАРЯЖЕННОГО ПРОВОДА С ТОКОМСкачать

ЧК_МИФ   РАЗБОР ЗАДАЧИ О РАВНОМЕРНОМ ДВИЖЕНИИ ЭЛЕКТРОНА ВДОЛЬ  ЗАРЯЖЕННОГО ПРОВОДА С ТОКОМ

Теорема Гаусса для расчета полей цилиндра (нити) и плоскостиСкачать

Теорема Гаусса для расчета полей цилиндра (нити) и плоскости

ЧК_МИФ ПРИМЕНЕНИЕ ТЕОРЕМЫ ГАУССАСкачать

ЧК_МИФ     ПРИМЕНЕНИЕ ТЕОРЕМЫ ГАУССА

Задача №2. Потенциал проводящей сферы.Скачать

Задача №2. Потенциал проводящей сферы.

Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.Скачать

Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.

43. Применение теоремы ГауссаСкачать

43. Применение теоремы Гаусса

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Лекция 1-4 Теорема Гаусса Формулировка и примерыСкачать

Лекция 1-4 Теорема Гаусса Формулировка и примеры

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.
Поделиться или сохранить к себе:
Технарь знаток