Докажите что объемы двух цилиндров у которых площади боковых поверхностей

Авто помощник

Видео:№ 746 - Геометрия 10-11 класс АтанасянСкачать

№ 746 - Геометрия 10-11 класс Атанасян

Докажите что объемы двух цилиндров у которых площади боковых поверхностей

Шар вписан в цилиндр. Площадь поверхности шара равна 111. Найдите площадь полной поверхности цилиндра.

Высота цилиндра равна диаметру шара, а радиус основания цилиндра равен радиусу шара (см. рис.).

Площадь основания цилиндра:

Площадь боковой поверхности цилиндра:

Площадь полной поверхности цилиндра:

Поскольку площадь поверхности шара дается формулой имеем:

Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна Найдите площадь боковой поверхности конуса.

Заметим, что конус и цилиндр имеют общую высоту и равные радиусы основания. Площадь боковой поверхности цилиндра равна откуда, учитывая, что получаем: или

Образующая конуса его высота и радиус основания связаны соотношением откуда, учитывая, что получаем: или

Площадь боковой поверхности конуса равна следовательно:

Цилиндр и конус имеют общее основание, вершина конуса является центром другого основания цилиндра. Каждая образующая конуса наклонена к плоскости основания под углом 30°.

а) Докажите, что площади боковых поверхностей цилиндра и конуса равны

б) Найдите радиус сферы, касающейся боковых поверхностей цилиндра и конуса, а так

же одного из оснований цилиндра, если известно, что объем конуса равен

а) Пусть радиус основания цилиндра равен а высота Тогда тангенс угла наклона образующей есть откуда и образующая конуса равна Вычислим теперь площади боковой поверхности цилиндра и конуса. Это и что и требовалось доказать.

б) Рассмотрим сечение цилиндра и конуса осевой плоскость, проходящей через центр сферы. Все точки касания будут лежать в этой плоскости. В сечении получим окружность, вписанную в прямоугольный треугольник со сторонами поэтому ее радиус равен

C другой стороны, как мы знаем,

откуда поэтому искомый радиус равен 1.

Видео:Задание №746 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)Скачать

Задание №746 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)

Докажите что объемы двух цилиндров у которых площади боковых поверхностей

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна плоскости ВСС1б а значит, угол АВС1 прямой.

б) Отрезок AC является диаметром основания цилиндра. Значит, длина

окружности основания цилиндра равна

Следовательно, площадь боковой поверхности цилиндра равна

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой поверхности цилиндра, если AB = 15, BB1 = 21, B1C1 = 20.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна плоскости ВСС1б а значит, угол АВС1 прямой.

б) Отрезок AC является диаметром основания цилиндра. Значит, длина

окружности основания цилиндра равна

Следовательно, площадь боковой поверхности цилиндра равна

Аналоги к заданию № 520938: 520945 Все

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости, в том числе и ВС1. Значит, угол АВС1 прямой.

б) Поскольку прямые ВВ1 и СС1 параллельны, искомый угол равен углу АС1С.

Треугольники АВС и АСС1 являются прямоугольными, поэтому:

Приведем другой способ решений.

a) Введем систему координат, как показано на рисунке. Найдем координаты точек A, B и C1. Пусть а радиус основания — r, тогда

Найдем координаты векторов и

Найдем скалярное произведение векторов и

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

Читайте также: Что такое цилиндр в токарном станке

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости. Значит, угол АВС1 прямой.

б) Поскольку прямые ВВ1 и СС1 параллельны, искомый угол равен углу АС1С.

Треугольники АВС и АСС1 являются прямоугольными, поэтому:

Приведем другой способ решений.

a) Введем систему координат, как показано на рисунке. Найдем координаты точек A, B и C1. Пусть а радиус основания — r, тогда

Найдем координаты векторов и

Найдем длины векторов и

Найдем косинус угла между этими векторами:

Значит, угол АВС1 прямой.

Аналоги к заданию № 520803: 520853 520879 520915 Все

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между этими хордами равно

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

а) Заметим, что хорда длиной 12 находится на расстоянии от центра окружности основания, а хорда длиной 16, аналогично, — на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2. Тогда расстояние между хордами составляет либо либо По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее.

б) Обозначим центры оснований за и Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания — к другой хорде. Они лежат в одной плоскости перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание —

Тогда и, значит, AB, AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Расстояние между этими хордами равно

а) Докажите, что центры оснований цилиндра лежат по разные стороны от этой плоскости.

б) Найдите тангенс угла между этой плоскостью и плоскостью основания цилиндра.

а) Заметим, что хорда длиной 24 находится на расстоянии от центра окружности основания, а хорда длиной 10, аналогично, — на расстоянии 12. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 5+12=17, либо 12-5=7. Тогда расстояние между хордами составляет либо либо По условию реализовался первый случай, в нем проекции хорд лежат по разные стороны от оси цилиндра. Значит, ось пересекает данную плоскость в пределах цилиндра, то есть центры оснований лежат по разные стороны от нее.

б) Обозначим центры оснований за и Проведем из центра основания с хордой длины 24 серединный перпендикуляр к этой хорде (он имеет длину 5, как уже отмечалось) и из центра другого основания — к другой хорде. Они лежат в одной плоскости перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание —

Тогда и, значит, AB, AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит искомый угол это

Аналоги к заданию № 513259: 514721 Все

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC&nbsp— диаметр основания. Известно,что

а) Докажите, что угол между прямыми и равен

а) Пусть BB1 — образующая цилиндра. Тогда BB1C1C — прямоугольник, поэтому угол между прямыми AC1 и равен углу

Угол ABC опирается на диаметр основания цилиндра, поэтому он прямой. Значит, прямая B1C1, параллельная прямой , перпендикулярна прямым AB и BB1. Таким образом, прямая B1С1 перпендикулярна плоскости ABB1, а значит, угол AB1C1 прямой.

В прямоугольном треугольнике АB1С1:

б) Отрезок AC является диаметром основания цилиндра. Значит, площадь основания цилиндра

Следовательно, объём цилиндра

В конус вписан цилиндр так, что нижнее основание цилиндра лежит на основании конуса, а окружность верхнего основания принадлежит боковой поверхности конуса. Объем конуса равен 72.

а) Найти объем цилиндра, верхнее основание которого делит высоту конуса пополам.

б) Найти наибольший объем вписанного цилиндра.

а) Обозначим радиус основания конуса за высоту за за и — радиус и высоту цилиндра. Проведем осевое сечение конуса. В нем верхнее основание цилиндра будет средней линией треугольника, поэтому радиус цилиндра вдвое меньше радиуса конуса. Высота цилиндра — тоже половина высоты конуса. Объем конуса равен:

Читайте также: Строение главного цилиндра сцепления уаз 469

б) В осевом сечении образуются два подобных треугольник (см. рисунок). Значит,

Значит, Объем цилиндра равен:

Нужно максимизировать Возьмем производную по

Крайние значения можно не проверять ( или там объем равен нулю). Имеем:

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости. Значит, угол АВС1 прямой.

б) Треугольник ABC1 прямоугольный, поэтому искомое расстояние равно его высоте h, проведённой к гипотенузе. Получаем:

Аналоги к заданию № 520803: 520853 520879 520915 Все

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

а) Рассмотрим плоскость, проходящую через ось цилиндра и прямую АС1. Обозначим точку пересечения этой плоскости и окружности основания цилиндра, содержащую точку А, через точку С. Тогда СС1 — образующая цилиндра. Отрезок АС пересекает ось цилиндра. Значит, он проходит через центр окружности основания цилиндра, то есть является ее диаметром. Следовательно, угол АВС прямой.

Прямая СС1 является образующей цилиндра, поэтому она перпендикулярна прямой АВ. Таким образом, прямая АВ перпендикулярна двум пересекающимся прямым, лежащим в плоскости ВСС1 ( и СС1), а значит, прямая АВ перпендикулярна плоскости ВСС1 и любой прямой, лежащей в этой плоскости. Значит, угол АВС1 прямой.

б) Треугольник ABC1 прямоугольный, поэтому искомое расстояние равно его высоте h, проведённой к гипотенузе. Получаем:

Аналоги к заданию № 520803: 520853 520879 520915 Все

Цилиндр и конус имеют общее основание, вершина конуса является центром другого основания цилиндра. Каждая образующая конуса наклонена к плоскости основания под углом 30°.

а) Докажите, что площади боковых поверхностей цилиндра и конуса равны

б) Найдите радиус сферы, касающейся боковых поверхностей цилиндра и конуса, а так

же одного из оснований цилиндра, если известно, что объем конуса равен

а) Пусть радиус основания цилиндра равен а высота Тогда тангенс угла наклона образующей есть откуда и образующая конуса равна Вычислим теперь площади боковой поверхности цилиндра и конуса. Это и что и требовалось доказать.

б) Рассмотрим сечение цилиндра и конуса осевой плоскость, проходящей через центр сферы. Все точки касания будут лежать в этой плоскости. В сечении получим окружность, вписанную в прямоугольный треугольник со сторонами поэтому ее радиус равен

C другой стороны, как мы знаем,

откуда поэтому искомый радиус равен 1.

В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения.

а) Докажите, что диагонали этого сечения равны между собой.

б) Найдите объём пирамиды CABNM.

а) Так сечение перпендикулярно прямой CD, то оно перпендикулярно основанию цилиндра содержащему эту прямую. Для построения сечения опустим перпендикуляры AM и BN на второе основание цилиндра. Отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Диагонали прямоугольника равны, что и требовалось доказать.

б) Площадь прямоугольника ABNM равна Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен

AB — диаметр нижнего основания цилиндра, а CD — хорда верхнего основания цилиндра, причём CD || AB.

а) Докажите, что отрезки AC и BD равны.

б) Найдите объём пирамиды, основанием которой является четырёхугольник с вершинами в точках A, B, C, D, а вершиной — центр верхнего основания цилиндра, если известно, что высота цилиндра равна 9, AB = 26, CD = 10.

а) Рассмотрим — проекцию AB на плоскость верхнего основания. Тогда поэтому точки служат вершинами вписанной трапеции. Но такая трапеция обязательно равнобедренная, поэтому ее боковые стороны и диагонали равны, то есть Обозначая за h высоту цилиндра, имеем

б) Будем считать, что точки лежат именно в таком порядке (иначе переименуем точки C и D). Опустим перпендикуляр OH на CD. Заметим, что поэтому Обозначая за центр нижнего основания цилиндра, находим — высота трапеции ACDB.

Читайте также: Иж планета 1 цилиндр сколько кубов

Опустим перпендикуляр из O на Он будет также перпендикулярен CD (поскольку то и плоскость в которой он лежит, перпендикулярна CD).

Значит, это и будет высота пирамиды. Теперь считаем

Дан прямой круговой цилиндр высотой 9 и радиусом 2. В одном из оснований проведена хорда AB, равная радиусу основания, а в другом основании проведён диаметр CD, перпендикулярный прямой AB. Построено сечение цилиндра плоскостью ABNM, перпендикулярной прямой CD, причём точка C и центр основания цилиндра, содержащего отрезок CD, лежат по одну сторону от плоскости сечения.

а) Докажите, что диагонали четырёхугольника ABNM равны.

б) Найдите объём пирамиды CABNM.

а) Плоскость сечения ABNM перпендикулярна прямой CD, поэтому отрезки AM и BN являются образующими цилиндра. Следовательно, отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.

б) Площадь прямоугольника ABNM равна Пусть H — точка пересечения отрезков NM и CD, O — центр основания цилиндра, содержащего отрезок CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:

Дан прямой круговой цилиндр высотой 3 и радиусом 8. В одном из оснований проведена хорда AB, равная радиусу основания, а в другом основании проведён диаметр CD, перпендикулярный прямой AB. Построено сечение цилиндра плоскостью ABNM, перпендикулярной прямой CD, причём точка C и центр основания цилиндра, содержащего отрезок CD, лежат по одну сторону от плоскости сечения.

а) Докажите, что диагонали четырёхугольника ABNM равны.

б) Найдите объём пирамиды CABNM.

а) Плоскость сечения ABNM перпендикулярна прямой CD, поэтому отрезки AM и BN являются образующими цилиндра. Следовательно, отрезки AM и BN параллельны и равны, значит, ABNM — параллелограмм. Так как прямые AM и BN перпендикулярны основаниям цилиндра и, в частности, прямой AB, параллелограмм ABNM является прямоугольником. Отрезки AN и BM равны как диагонали прямоугольника, что и требовалось доказать.

б) Площадь прямоугольника ABNM равна Пусть H — точка пересечения отрезков NM и CD, O — центр основания цилиндра, содержащего отрезок CD. Отрезок OH равен Высота CH пирамиды CABNM равна Следовательно, объём пирамиды CABNM равен:

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и ∠A = 120° расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания.

а) Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

б) Докажите, что радиус основания цилиндра больше, чем .

а) Пусть AA1 — образующая цилиндра, M — середина хорды BC. Тогда

В равнобедренных треугольниках BAC и BA1C медианы AM и A1M являются высотами. Поэтому искомый угол между плоскостями равен углу ∠AMA1. В прямоугольном треугольнике AMA1 имеем:

б) Из пункта а) получаем, что , , значит . Тогда . Пусть R — радиус основания цилиндра. Тогда, по теореме синусов . Отсюда . Что и требовалось доказать.

Нет ни малейшего намека на то, где именно точка А касается нижнего оснвоания. Она может касаться ровно в центе окружности основания, либо, как у вас, на длине окружности.

По каким, так сказать, подсказкам вы определили, что точка А именно там, где она и есть?

Внимательнее читайте условие задачи («вершина A лежит на окружности нижнего основания цилиндра»).

Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Расстояние между этими хордами равно

а) Докажите, что центры оснований цилиндра лежат по разные стороны от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Сразу отметим, что в окружности радиуса R расстояние от центра до хорды (то есть до середины хорды) длиной равно Поэтому расстояния от центров оснований до хорд равны 5 и 12.

а) Пусть A и — середины хорд, B — проекция на другое основание цилиндра. Тогда поэтому следует выбирать знак что как раз и означает, что хорды лежат по разные стороны от центров оснований, поэтому центры лежат по разные стороны от плоскости.

б) Указанные две плоскости пересекаются по хорде, содержащей точку A, при этом AB перпендикулярна этой хорде, следовательно, и тоже. Поэтому

В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1 причём CC1 — образующая цилиндра, а AC — диаметр основания. Известно, что

а) Докажите, что угол между прямыми BC и AC1 равен

б) Найдите расстояние от точки B до AC1.

а) Пусть — образующая цилиндра. Тогда — прямоугольник, поэтому угол между прямыми и равен углу

Угол ABC опирается на диаметр основания цилиндра, поэтому он прямой. Значит, прямая параллельная прямой перпендикулярная прямым и Таким образом, прямая перпендикулярна плоскости а значит, угол прямой.

В прямоугольном треугольнике :

Тогда Таким образом, гипотенуза AC1 прямоугольного треугольника AB1C1 вдвое больше катета. Следовательно, а искомый

б) Наклонная C1B перпендикулярна прямой AB по теореме о трёх перпендикулярах. Тогда треугольник АВС1 прямоугольный, а искомое расстояние равно длине высоты, проведенной из вершины прямого угла треугольника ABC1 к гипотенузе АС1. Она равна

🎥 Видео

Площадь поверхности призмы. 11 класс.Скачать

Площадь поверхности призмы. 11 класс.

№ 161 - Геометрия 7-9 класс АтанасянСкачать

№ 161 - Геометрия 7-9 класс Атанасян

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхностиСкачать

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхности

Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)Скачать

Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)

11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). ЦИЛИНДР.Скачать

ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). ЦИЛИНДР.

№521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположныеСкачать

№521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположные

Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

№546. Один цилиндр получен вращением в пространстве прямоугольника ABCD вокруг прямойСкачать

№546. Один цилиндр получен вращением в пространстве прямоугольника ABCD вокруг прямой

Задача 332 Атанасян Геометрия 7 9 2023Скачать

Задача 332 Атанасян Геометрия 7 9 2023

Задача 331 Атанасян Геометрия 7 9 2023Скачать

Задача 331 Атанасян Геометрия 7 9 2023

Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать

Призма и пирамида. Площадь и объем.  Вебинар | Математика 10 класс

№ 150 - Геометрия 7-9 класс АтанасянСкачать

№ 150 - Геометрия 7-9 класс Атанасян

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭ
Поделиться или сохранить к себе:
Технарь знаток