- Что такое цилиндр: определение, элементы, виды, варианты сечения
- Определение цилиндра
- Основные элементы цилиндра
- II.2 Метод угловых коэффициентов (Нестреров С.Б., Васильев Ю.К., Андросов А.В. Методы расчета вакуумных систем)
- Описание файла
- Онлайн просмотр документа «II.2 Метод угловых коэффициентов»
- Текст из документа «II.2 Метод угловых коэффициентов»
- II.2. Метод угловых коэффициентов
- II.2.1. Основные понятия
- II.2.2. Расчет угловых коэффициентов
- 2.2.3. Примеры решения задач методом угловых коэффициентов
- 🔥 Видео
Видео:Одновинтовой или Соосный: достоинства и недостаткиСкачать
Что такое цилиндр: определение, элементы, виды, варианты сечения
В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения одной из самых распространенных трехмерных геометрических фигур – цилиндра. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.
Видео:Хон или зеркало? Научно-практический коментарийСкачать
Определение цилиндра
Далее мы подробно остановимся на прямом круговом цилиндре как самой популярной разновидности фигуры. Другие ее виды будут перечислены в последнем разделе данной публикации.
Прямой круговой цилиндр – это геометрическая фигура в пространстве, полученная путем вращения прямоугольника вокруг своей стороны или оси симметрии. Поэтому такой цилиндр иногда называют цилиндром вращения.
Цилиндр на рисунке выше получен в результате вращения прямоугольного треугольника ABCD вокруг оси O1O2 на 180° или прямоугольников ABO2O1/O1O2CD вокруг стороны O1O2 на 360°.
Видео:Объём цилиндраСкачать
Основные элементы цилиндра
- Основания цилиндра – два одинаковых по размеру/площади круга с центрами в точках O1 и O2.
- R – радиус оснований цилиндра, отрезки AD и BC – диаметры (d).
- O1O2 – ось симметрии цилиндра, одновременно является его высотой (h).
- l (AB, CD) – образующие цилиндра и одновременно с этим стороны прямоугольника ABCD. Равны высоте фигуры.
Развёртка цилиндра – боковая (цилиндрическая) поверхность фигуры, развернутая в плоскость; является прямоугольником.
- длина данного прямоугольника равна длине окружности основания цилиндра ( 2πR );
- ширина равна высоте/образующей цилиндра.
Примечание: формулы для нахождения площади поверхности и объема цилиндра представлены в отдельных публикациях.
Видео:как замерить выработку поршня и цилиндраСкачать
II.2 Метод угловых коэффициентов (Нестреров С.Б., Васильев Ю.К., Андросов А.В. Методы расчета вакуумных систем)
Видео:Видеоурок по математике "Цилиндр"Скачать
Описание файла
Файл «II.2 Метод угловых коэффициентов» внутри архива находится в папке «Нестреров С.Б., Васильев Ю.К., Андросов А.В. Методы расчета вакуумных систем». Документ из архива «Нестреров С.Б., Васильев Ю.К., Андросов А.В. Методы расчета вакуумных систем», который расположен в категории «книги и методические указания». Всё это находится в предмете «вакуумная и плазменная электроника (вакплазэл)» из третьего семестра, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе «книги и методические указания», в предмете «вакуумная и плазменная электроника (вакплазэл)» в общих файлах.
Читайте также: Замена заднего тормозного цилиндра солярис дисковые тормоза
Видео:(0.02 мм) ДВЕ СОТКИ которые СПАСУТ твой двигательСкачать
Онлайн просмотр документа «II.2 Метод угловых коэффициентов»
Видео:Что если, ОТПИЛИТЬ 2 ЦИЛИНДРА и запустить ПОЛОВИНУ ДВИГАТЕЛЯ?Скачать
Текст из документа «II.2 Метод угловых коэффициентов»
Видео:СТРОГО ПО ЦЕНТРУ !!! БЕЗ СТАНКА И ТОКАРЯ, как просверлить отверстие в болтеСкачать
II.2. Метод угловых коэффициентов
Видео:Лекция 131. Емкость цилиндрического конденсатораСкачать
II.2.1. Основные понятия
Проводимость вакуумных систем в целом и их элементов (клапанов, затворов, участков трубопроводов), коэффициенты захвата различных устройств (насосов, ловушек и др.), а также распределение молекул по поверхностям вакуумной системы или отдельных ее участков можно рассчитать с помощью угловых коэффициентов, используемых для определения теплообмена излучением.
В общем случае элементарную площадку площадью dFi поверхности площадью Fi (далее поверхность Fi) вакуумной системы покидает поток молекул, плотность которого
где – плотность потока молекул, испускаемых элементарной площадкой dFi (например, в результате газовыделения поверхности); – коэффициент поглощения молекул газа площадкой dFi; – плотность потока, молекул, падающих на площадку dFi.
На элементарную площадку dFi падает поток молекул со всех поверхностей вакуумной системы, видимых из центра площадки и образующих замкнутую систему. Полная плотность падающего потока
где – плотность потока молекул, покидающих площадку ; – вероятность попадания молекул газа с элементарной площадки поверхности Fj на площадку поверхности Fi.
Вероятность зависит от закона отражения и испускания частиц поверхностью и взаимной ориентации площадок. Величина называется дифференциальным или элементарным угловым коэффициентом, и в случае диффузного закона отражения
где – угол между нормалью к площадке и линией, соединяющей центры площадок и ; – угол между нормалью к площадке и линией, соединяющей центры площадок и ; r – расстояние между центрами площадок и .
Вероятность попадания молекул газа с элементарной площадки dFj на всю поверхность площадью Fi называют локальным угловым коэффициентом:
Вероятность попадания молекул газа с поверхности Fj на поверхность Fi при постоянстве qj по всей поверхности Fj называют средним угловым коэффициентом:
Угловые коэффициенты обладают свойствами:
аддитивности: , . Свойство аддитивности угловых коэффициентов заключается в том, что угловой коэффициент между поверхностями Fj и Fi равен сумме коэффициентов между поверхностью Fj и всеми частями Fik поверхности Fi ,из которых она состоит.
Видео:Зачем на стенках цилиндров нового двигателя наносят царапины. Хонингование, что этоСкачать
II.2.2. Расчет угловых коэффициентов
Угловой коэффициент является основной расчетной величиной. Он может быть найден аналитическим, графоаналитическим методами. Методом поточной алгебры и численно при помощи ЭВМ. Первые три метода изложены в [1, 4]. Рассмотрим подробно аналитический метод определения угловых коэффициентов.
Читайте также: Расположение цилиндров toyota tundra
Аналитический метод основан на непосредственном интегрировании математического выражения для элементарного углового коэффициента. Рассмотрим в качестве примера систему, приведенную на рис. 2.1, если тела имеют диффузное отражение.
Рис. 2.1. Элемент плоскости и перпендикулярный ему круглый диск
Найдем значения величин, входящих в зависимость . Эти величины, входящие в это выражение, определяются следующим образом:
При и . Полученное выражение можно записать как
Пусть , тогда будем иметь
Далее обозначим первый интеграл последнего выражения через I1, а второй через I2. Для вычисления интеграла I2 воспользуемся рекуррентной формулой . Получим
С учетом полученных соотношений продолжим вычисления:
После преобразования будем иметь
Обозначив через V1 и V2 соответственные члены последнего выражения , проведем вычисления далее:
Теперь вычислим второй интеграл:
Подставив в это выражение будем иметь
Обозначив интегралы последнего выражения соответственно через A1 и A2, преобразуем их (первый при , второй при
. С учетом преобразований получим
Пусть , тогда последнее соотношение будет иметь вид
Так как при интегрировании по мы взяли интеграл на участке от 0 до , а реально необходимо интегрировать от 0 до 2, то полученное выражение необходимо умножить на 2.
Теперь рассмотрим пример расчета углового коэффициента для системы, состоящей из двух соосных круглых дисков (рис. 2.2).
Рис. 2.2. Два параллельных соосных диска
Определим все величины, входящие в зависимость
Первоначально вычислим . Для этого раскроем подынтегральное выражение. На рис. 2.3. изображена система, состоящая из круглого диска радиусом R0 и параллельного ей элемента плоскости dF1. Из рисунка видно, что r 2 =s 2 +a 2 +R 2 +2aRcos; cos1=cos2=s/r; dF2=RdRd.
Рис. II.3. Круглый диск и параллельный ему элемент плоскости
Этот интеграл вычисляется аналогично интегралу (2.6).
Далее вычислим , но при этом в (2.8) вместо a подставим R1, а вместо R0 возьмем R20, и с учетом того, что , получим
При последнее выражение будет иметь вид
. Если обозначим , то далее получим =
В итоге получим, что для двух соосных параллельных дисков радиусами R1 и R2 угловой коэффициент
Далее в табл. 2.1 приведем формулы для определения угловых коэффициентов для наиболее часто встречающихся комбинаций поверхностей.
Таблица 2.1. Расчетные формулы угловых коэффициентов.
Читайте также: Как называется когда цилиндры в моче
Геометрическое положение плоскостей (фигура)
Комбинация поверхностей; расчетная формула
Два бесконечно малых произвольно ориентированных элемента;
Две бесконечные пластины, имеющие одну общую сторону;
Две бесконечные пластины, параллельные друг другу;
Два бесконечно длинных параллельных цилиндра с одинаковым радиусом;
Внутренняя поверхность и торцы усеченного конуса;
Два параллельных соосных диска;
Полоса и цилиндр бесконечной длины;
Видео:как должны болтаться поршня в цилиндрахСкачать
2.2.3. Примеры решения задач методом угловых коэффициентов
Пример 1. Расчет коэффициента Клаузинга для цилиндрического трубопровода (рис. 2.4).
Обозначим входное сечение трубопровода цифрой 1, выходное сечение – 2 и боковую поверхность – 3. В сечение 1 входит поток газа Qд1, десорбция газа с боковой поверхности отсутствует. Боковая поверхность трубопровода имеет коэффициент отражения 3=1, а поверхности 1 и 2, так как представляют собой сквозные отверстия, имеют коэффициенты отражения 1=0. Для нахождения коэффициента Клаузинга необходимо определить, какая доля потока Qд1 дойдет до выходного сечения 2. Запишем уравнение (2.1.) для каждой поверхности:
Рис. 2.4. Цилиндрический трубопровод
Определим угловые коэффициенты, входящие в эту систему. По формуле (2.9) рассчитаем при R1=R2=R, S=2R, = 0,172. Для любой плоской поверхности , следовательно, = 0. Из свойства замкнутости () получим, что 0,828. 0,172, ; 0,828.
Из свойства взаимности (F3F1) получим так как , то 0,207. Из свойства замкнутости определим, что =0,586.
Так как на поверхности 3 отсутствует десорбция молекул, а в сечение 2 не входит внешний поток, то Qд2= 0, Qд3= 0. Получим, что Q= Qд, Q= 0, Q= Q+Q, или .
Поток, падающий на i-ю поверхность , следовательно .
Определим коэффициент Клаузинга для трубопровода:
Решив данную задачу при , получим: а .
Этот результат является неверным, так как при коэффициент Клаузинга трубопровода стремится к нулю: . Поэтому применение метода угловых коэффициентов в таком виде при L/R > 4 дает большую погрешность. Если L/R = 4, то коэффициент Клаузинга, рассчитанный методом угловых коэффициентов, отличается от действительного примерно на 40%. Для получения более точного результата применяют метод угловых коэффициентов с разбиением.
🔥 Видео
Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать
3-й фланец по счету... б/у редуктор уже 2-й 🤦🏻♂️ переделываем кардан G12, чтобы такого не случалосьСкачать
Часть 3 . Экспортная LADA NOVA. 2 литра масла на 1000 км.Скачать
Говорю почему не работает один цилиндр двигателяСкачать
ЗАДИРОВ в цилиндрах НЕ БУДЕТ если делать так...Скачать
Начертательная геометрия. Лекция 16. Часть 1.Скачать
Зазорам - быть, чтобы Двигатель "Не Жрал" масло. Как Правильно? Ч.2Скачать
Воздушный компрессор из двух соосных поршнейСкачать