Для РУ 110 — 220 кВ с большим числом присоединений применяется схема с двумя рабочими и обходной системами шин с одним выключателем на цепь (рис. 2.6, а). Схема обладает всеми оперативными свойствами схем с двумя системами сборных шин и, кроме того, предоставляет возможность вывода в ремонт выключателя любой электрической цепи без перерыва в ее работе и отключения электрической цепи обходным выключателем при неполадках в работе выключателя цепи, когда отключение его невозможно (неисправен привод масляного выключателя, поврежден фарфор камер воздушного выключателя и т. д.).
Как правило, обе системы шин находятся в работе при соответствующем фиксированном распределении всех присоединений: линии W1, W3, W5 и трансформатор Т1 присоединены к первой системе шин Al, линии W2, W4, W6 и трансформатор Т2 присоединены ко второй системе шин А2, шиносоеденительный выключатель QA включен. Такое распределение присоединений увеличивает надежность схемы, так как при КЗ на шинах отключаются шиносоединительный выключатель QA и только половина присоединений. Если повреждение на шинах устойчивое, то отключившиеся присоединения переводят на исправную систему шин. Перерыв электроснабжения половины присоединений определяется длительностью переключений.
Рис. 2.6. Схема с двумя рабочими и обходной системами шин:
а – основная схема; б, в – вариант схем
Рассмотренная схема рекомендуется для РУ 110 — 220 кВ на стороне ВН и СН подстанций при числе присоединений 7-15 [3], а также на электростанциях при числе присоединений до 12.
Особенности схемы с двумя системами шин были рассмотрены ранее. Здесь следует отметить, что для РУ 110 кВ и выше существенными становятся недостатки этой схемы:
отказ одного выключателя при аварии приводит к отключению всех источников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если источниками питания являются мощные блоки турбогенератор—трансформатор, то пуск их после сброса нагрузки на время более 30 мин может занять несколько часов;
повреждение шиносоединительного выключателя равноценно КЗ на обеих системах шин, т. е. приводит к отключению всех присоединений;
большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;
необходимость установки шиносоедипительного, обходного выключателей и большого количества разъединителей увеличивает затраты на сооружение РУ.
Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин.
На ТЭС и АЭС при числе присоединений 12-16 секционируется одна система шин, при большем числе присоединений — обе системы шин.
На подстанциях секционируется одна система шин при U = 220 кВ при числе присоединений 12—15 или при установке трансформаторов мощностью более 125 MB-А; обе системы шин 110—220 кВ секционируются при числе присоединений более 15 [3].
Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение совмещенных шиносоединительного и обходного выключателей QOA (рис. 2.6, б). В нормальном режиме разъединители QS1, QSO, QS2 включены и обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта одного выключателя отключают выключатель QOA и разъединитель QS2 и используют, обходной выключатель по его прямому назначению. В схемах с большим числом линий количество таких переключений в год значительно, что приводит к усложнению эксплуатации, поэтому имеются тенденции к отказу от совмещения шиносоединительного и обходного выключателей [3].
В схеме с секционированными шинами при повреждении на шинах или при КЗ в линии и отказе выключателя теряется только 25 % присоединений (на время переключений), однако при повреждении в секционном выключателе теряется 50% присоединений.
Дли электростанций с мощными энергоблоками (300 МВт и более) увеличить надежность схемы можно, присоединив источники или автотрансформаторы связи через развилку из двух выключателей (рис. 2.6, в). Эти выключатели в нормальном режиме выполняют функции шиносоединительного. При повреждении на любой системе шин автотрансформатор остается в работе, исключается возможность потери обеих систем шин.
Читайте также: Все виды летних шин
Видео:РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)Скачать
Д) Схема с двумя рабочими и обходной системами шин
Для РУ напряжением 110 кВ и выше с большим числом присоединений широко применяется схема с двумя рабочими и обходной системами шин с одним выключателем на цепь (рис. 5-15, а). Как правило, в установках 110 кВ и выше применяется фиксированное распределение присоединений: линии Л1, Л2 и источник ИП1 присоединении 1-й системе шин, линии ЛЗ, Л4 и источник питания ИП2 присоединены ко 2-й системе шин, перемычка с разъединителем Р включена и обходной выключатель служит одновременно шиносоединительным (ШСОВ).
При необходимости использования ШСОВ по прямому назначению надо отключить его, разделив тем самым рабочие системы шин, затем отключить разъединитель Р и воспользоваться обходным выключателем
Если размыкание шин недопустимо вследствие возможности нарушения параллельной работы источников питания, то предварительно переводят все присоединения на одну систему шин. Чем больше присоединений к сборным шинам, тем больше операций необходимо произвести для освобождения обходного выключателя и тем большее время он будет занят для замены выключателей присоединений, поэтому отказ от отдельного шиносоединительного выключателя допустим при числе присоединений не более семи и мощности агрегатов меньше 160 МВт 5.
е) Схемас двумя системами шин и тремя выключателями на две цепи
Враспределительных устройствах 330—500 кВ применяется схема с двумя системами шин и тремя выключателями на две цепи. Как видно из рис. 5-16, на шесть присоединений необходимо девять выключателей, т. е. на каждое присоединение «полтора» выключателя (отсюда происходит второе название схемы: «полуторная» или «схема с 3/2 выключателями на цепь»).
Каждое присоединение включено через два выключателя. Для отключения линии Л1 необходимо отключить выключатели В1, В2, для отключения, трансформатора Т1 — В2, ВЗ.
В нормальном режиме все выключатели включены, обе системы шин находятся под напряжением. Для ревизии любого выключателя отключают его разъединители, установленные по обе стороны выключателя. Количество операций для вывода в ревизию — минимальное, разъединители служат только для отделения выключателя при ремонте, никаких оперативных переключений ими не производят. Достоинством схемы является то, что при ревизии любого выключателя все присоединения остаются в работе. Другим достоинством полуторной схемы является высокая ее надежность,
так как все цепи остаются в работе даже при повреждении на сборных шинах. Так, например, при к. з. на первой системе шин отключатся выключатели ВЗ, В6, В9, шины останутся без напряжения, но все присоединения сохранятся в работе. При равенстве числа источников питания и линий работа всех цепей сохраняется даже при отключении обеих систем шин; при этом может лишь нарушиться параллельная работа на стороне повышенного напряжения.
Схема позволяет в рабочем режиме без операций разъединителями производить опробование выключателей. Ремонт шин, очистка изоляторов, ревизия шинных разъединителей производится без нарушения работы цепей (отключается соответствующий ряд шинных выключателей), все цепи продолжают работать параллельно через оставшуюся под напряжением систему шин.
ж) Схема с двумя системами шин и с четырьмя выключателями на три цепи
В схеме на рис. 5-17, ана девять присоединений требуется 12 выключателей, т. е. на каждое присоединение 4/3 выключателя. Наилучшие показатели схема имеет, если число линий в 2 раза меньше или больше числа трансформаторов.
Схема с 4/3 выключателя на присоединение имеет все достоинства полуторной схемы и кроме того:
схема более экономична (1,33 выключателя на присоединение вместо 1,5);
секционирование сборных шин требуется только при 15 присоединениях и более;
надежность схемы практически не снижается, если в одной из цепочек будут присоединены две линии и один трансформатор вместо двух трансформаторов и одной линии;
конструкция ОРУ по рассмотренной схеме достаточно экономична и удобна в обслуживании, если принять компановку с двухрядным расположением выключателей (рис. 5-17, б) 6.
Схема находит применение в РУ 330—500 кВ мощных КЭС.
Видео:Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШСкачать
Схема с двумя рабочими и обходной системами шин.
В распределительных устройствах 110кВ с большим количеством присоединений широко применяется схема с двумя рабочими и обходной системами шин с одним выключателем на цепь (рис. 3-4).
Читайте также: Зимние шины в казани r17
В схеме применен отдельный шиносоединительный выключатель ШСВ, отказ от него допустим при числе присоединений не более семи и мощности агрегатов меньше 160 МВт. Установка отдельного ШСВ обеспечивает большую оперативную гибкость, хотя и увеличивает капитальные затраты.
Особенности схемы с двумя системами шин и схемы с обходной системой шин были рассмотрены ранее в §§ 3.2-3.3. Здесь следует отметить, что для РУ 110 кВ существенными становятся недостатки этих схем:
отказ одного выключателя при аварии приводит к отключению всех источников питания и линий, присоединенных к данной СШ, а если в работе находится одна СШ отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если источниками питания являются мощные блоки генератор-трансформатор, то пуск их после сброса нагрузки на время более 30 минут может занять несколько часов;
повреждение шиносоединительного выключателя равноценно кз на обеих системах шин, т.е. приводит к отключению всех присоединений;
большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;
необходимость установки шиносоединительного, обходного выключателей и большого количества разъединителей увеличивает затраты на сооружение РУ.
Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин. Дополнительные капитальные затраты могут оправдать себя только при большом количестве присоединений (более 12-16).
Сравнивая рассмотренные варианты, выбираем схему с двумя рабочими и обходной не секционированными системами шин.
Рисунок 3-4 Схема с двумя рабочими и обходной системой шин
IV. Определить необходимость установки секционного реактора. Выбрать секционный реактор.
Схема замещения для расчета к.з. представлена на рис. 3-1, а. Для выяснения необходимости установки секционного реактора рассчитаем ток кз на шинах ГРУ при условии Хр=0 (т.е. без секционного реактора), и если этот ток окажется более максимального тока отключения маломасляных выключателей (90 кА), необходимо будет выбрать секционный реактор, ограничивающий ток кз.
Нагрузку расположенную вблизи генераторов учитываем уменьшением ЭДС генераторов до . Влиянием относительно малой нагрузки собственных нужд и удаленных от места кз нагрузок пренебрегаем.
Рисунок 4-1 Схемы замещения
Определим сопротивления схемы при базовой мощности Sб=1000МВА.
Сопротивление трансформаторов Т1, Т2:
Принимаем удельное сопротивление линий 0,4 Ом/км
Сопротивление системы при заданной мощности короткого замыкания Sкз=1600МВА:
Преобразуем схему в удобную для расчетов (рис. 4-1,б).
Хрез1=Хс+Хл=0,63+1,36=1,99
Поскольку сначала делаем расчет без секционного реактора (Хр=0), то по рис. 4-1,в:
Начальное значение периодической составляющей тока к.з. определяем из выражения:
, где — результирующее сопротивление ветви схемы; Iб- базовый ток; -ЭДС генератора.
Тогда ток трехфазного к.з. от генератора Г-4
Ток трехфазного к.з от системы и генераторов Г1-3
Суммарное значение периодической составляющей в точке к.з.
Так как ток трехфазного к.з. больше 90кА, то необходимо установить секционный реактор. Реактор выбираем, исходя из номинального напряжения и номинального тока генератора.
Uгном=6,3кВ Номинальный ток реактора можно выбрать по току, приближенно равному 0,6-0,7 Iг,ном. Выбираем 0,6Iг,ном=2,2кА.
Предполагаем к установке реактор РБГ-10-2500-0,2.
Uном=10кВ, Iном=2500А, Хр=0,2Ом, ток электродинамической стойкости iу=60кА, ток термической стойкости iт=23,6кА, допустимое время действия тока термической стойкости tт-8с, кроме этого по таблице 3.8 [1] находим Ку=1,956; Та=0,23с.
Приведем сопротивление реактора к базовым условиям.
Преобразуем схему рис.4-1б к виду как на рисунке 4-2а,б. Здесь треугольник Хт1, Хт2, Хр преобразован в звезду Х1,Х2,Х3.
Рисунок 4-2 Схемы замещения после преобразования треугольника в звезду
Суммарное значение периодической составляющей при к.з. на шинах ГРУ с установленным реактором:
Найдем токи в оставшихся ветвях звезды, а потом токи в исходной схеме:
Теперь выполним проверку стойкости реактора в режиме к.з.:
, где tоткл – время отключения к.з. релейной защитой. Его максимальное значение , т.е. при времени отключения защитой менее 18,8с реактор термически устойчив к к.з. Реально время отключения РЗА значительно меньше.
Выбранный реактор удовлетворяет всем предъявленным требованиям. С его применением значительно понизились токи к.з. (со 137,3кА до 64,2кА). Это позволит установить относительно дешевые маломасляные выключатели.
V. Выбрать схему собственных нужд электростанции.
Реакторы, через которые питаются с.н. присоединяются к шинам генераторного напряжения. Выбираем две рабочие секции с.н.
Читайте также: Шины nokian 175 65 r15
Номинальный ток реактора
Рассчитаем ток к.з. за реактором в утяжеленном режиме. Схема замещения для этого режима показана на рисунке 5-1.
Намечаем к установке на линии выключатель ВМП-10-630, Iоткл=20кА. Тогда
Рис. 5-1 Схема
замещенияПредполагаем к установке реактор РБГ-10-1500-0,23, Iдин.ст=53кА, Iтерм.ст=20кА.
Для проверки термической стойкости определяем тепловой импульс тока к.з.
, где tоткл=0,2с Та.сх=0,23с для ветвей защищенных реактором с номинальным током 1000А и выше.
Проверим стойкость выбранного реактора в режиме к.з.
Электродинамическая стойкость. Ку=1,956
Остаточное напряжение на шинах ГРУ при к.з. за реактором:
Выбранный тип реактора удовлетворяет предъявляемым к нему требованиям.
На рисунке 5-1 приведена схема питания СН. Все рабочее оборудование подключено к 1СШ, за исключением трансформатора связи Т2, который подключен к 2СШ. Шиносоединительный выключатель ШСВ2 нормально включен.
В этом случае, например, при аварии на 2 секции 1СШ ГРУ отключаются В5, В6, ВС1 и ШСВ2, затем защитой минимального напряжения отключается В10, после чего автоматически включаются В7, В15, восстанавливая питание с.н. от шин ВН через трансформатор связи Т2 подключенный к 2СШ. Далее оперативный персонал переключает все оборудование второй секции 1СШ на 2СШ и секция 2СН снова получает питание от рабочей секции 2СН.
Рисунок 5-1 Схема собственных нужд ТЭЦ
VI. Выбрать линейные реакторы.
Планируем по два линейных сдвоенных реактора на секцию и по три кабельных линии на плечо реактора плюс по одной линии на двух их четырех реакторов (итого 26 линий). Потребители на генераторном напряжении потребляют 50 МВт, поэтому в нормальном режиме ток по кабельной линии
Номинальный ток линии определяется ее нагрузкой в наиболее утяжеленном режиме, т.е. при отключении одной секции, тогда Imax,л=2Iном,р=2·0,22=0,44кА
Выбираем трехжильный кабель с Uном=6кВ с медными жилами с бумажной пропитанной маслоканифольной массой изоляцией в алюминиевой оболочке, прокладываемый в земле, сечением 185мм², Iдоп.ном=0,44кА
Рассчитаем ток к.з. за реактором в утяжеленном режиме. Схема замещения для этого режима показана на рисунке 6-1.
Намечаем к установке на линии выключатель ВМГ-10-630, Iоткл=20кА. Тогда
Рис. 6-1 Схема Ток на одну ветвь реактора Imax.в=4Imax.л=4·0,44=1.76кА
замещенияПредполагаем к установке реактор РБСД-10-2х2500-0,20, Iдин.ст=60кА, Iтерм.ст=26кА.
Для проверки термической стойкости кабеля определяем тепловой импульс тока к.з.
, где tоткл=0,2с Та.сх=0,23с для ветвей защищенных реактором с номинальным током 1000А и выше.
Минимальное сечение по термической стойкости
, где С=143 для кабелей с медными сплошными жилами и бумажной изоляцией. Так как q>>qmin, то кабель проходит по термической стойкости с большим запасом.
Проверим стойкость выбранного реактора в режиме к.з.
Электродинамическая стойкость. Ку=1,956
Остаточное напряжение на шинах ГРУ при к.з. за реактором:
Выбранный тип реактора удовлетворяет предъявляемым к нему требованиям. Схема распределительной сети приведена на рисунке 6-2.
Рисунок 6-2. Схема распределительной сети
VII. Расчет токов КЗ для выбора коммутационных аппаратов.
Рисунок 7-1 Расчетная схема токов КЗ
7.1 Короткое замыкание в точке К-1 (шины ВН).
Ветви генераторов Г1-4 симметричны по отношению к точке КЗ К-1. Поэтому сопротивление секционного реактора можно исключить из схемы замещения, так как оно включено между узлами одинакового потенциала и не влияет на ток. С учетом этого схема замещения для КЗ в точке К-1 будет иметь вид показанный на рисунке 7-2.
Суммарный ток в точке К-1 Iп0к-1=5,61+2,52=8,13кА
Считаем ударные токи, предварительно выбрав ударные коэффициенты:
Ветвь энергосистемы 110кВ Ку=1,608
ветви, состоящие из генераторов и повышающих трансформаторов (мощность генераторов 1000А)
Кур=1,956
7.3 Короткое замыкание в точке К-3 (линии потребителей на генераторном напряжении за реактором).
Iп0к-3 и iук-3 были найдены ранее при расчете линейного реактора и равны
7.4 Короткое замыкание в точке К-4 (цепи с.н.)
Ранее был выбран реактор РБГ-10-1500-0,23. Приведем сопротивление реактора к базовым условиям.
Схема замещения приведена на рисунке 7-3(а, б)
Из предыдущих расчетов
Тогда значение периодической составляющей от внешней сети
Периодическая составляющая от эквивалентного двигателя секции СНРисунок 7-3 Схема замещения
Суммарное значение периодической составляющей
Внешняя сеть
Кур=1,956
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
- Правообладателям
- Политика конфиденциальности
Автоподбор © 2023
Информация, опубликованная на сайте, носит исключительно ознакомительный характер🎥 Видео
Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШСкачать
Электрические подстанции #2 - Виды главных схем распределительных устройствСкачать
ГЗШ Основная система уравнивания потенциаловСкачать
Модель подстанцииСкачать
7. Подключение Modbus-модулей к шине RS-485Скачать
3.3 Системы оперативного тока подстанции 2 1Скачать
Лапидус А.В. Оперативные переключения глазами релейщика.Скачать
Подключение нескольких устройств, датчиков по I2C (АйТуСи) шинеСкачать
Лапидус А.А. Схемы подстанцийСкачать
2-КТП Комплектная трансформаторная подстанцияСкачать
РЗ #51 Дифференциальная защита шин (часть 1)Скачать
Лекция 308. Шина I2CСкачать
Делаем идеальные зазоры в дверях автомобиля)Скачать
ЭСиПСТ Лекция 4 - Схемы распределительных устройствСкачать
Скидывай друзьям, пускай пользуются! #тюнинг #авто #машинаСкачать
Цветовая маркировка проводов и шинСкачать
Логическая защита шин. Принцип действия и особенностиСкачать
Введение в шину I2CСкачать