Две рабочие системы шин с обходной компоновка

Для РУ 110 — 220 кВ с большим числом присоединений применяется схема с двумя рабочими и обходной системами шин с одним выключате­лем на цепь (рис. 2.6, а). Схема обла­дает всеми оперативными свойствами схем с двумя систе­мами сборных шин и, кроме того, предоставляет возмож­ность вывода в ремонт выключателя любой электрической цепи без перерыва в ее работе и отключения электричес­кой цепи обходным выключателем при неполадках в ра­боте выключателя цепи, когда отключение его невозможно (неисправен привод масляного выключателя, поврежден фарфор камер воздушного выключателя и т. д.).

Как правило, обе системы шин находятся в рабо­те при соответствующем фиксированном распределении всех присоедине­ний: линии W1, W3, W5 и трансформатор Т1 присоединены к первой системе шин Al, линии W2, W4, W6 и трансформатор Т2 присоединены ко второй системе шин А2, шиносоеденительный выключатель QA включен. Такое распределение присоединений увеличивает надежность схемы, так как при КЗ на шинах отключаются шиносоединительный выключатель QA и только половина присоединений. Если повреждение на шинах устойчи­вое, то отключившиеся присоединения переводят на исправную систему шин. Перерыв электроснабжения половины присоединений определяется длительностью переключений.

Две рабочие системы шин с обходной компоновка

Рис. 2.6. Схема с двумя рабочими и обходной системами шин:

а – основная схема; б, в – вариант схем

Рассмотренная схема рекомендуется для РУ 110 — 220 кВ на стороне ВН и СН подстанций при числе присоединений 7-15 [3], а также на электростанциях при числе присоединений до 12.

Особенности схемы с двумя системами шин были рассмотрены ранее. Здесь следует отметить, что для РУ 110 кВ и выше суще­ственными становятся недостатки этой схемы:

отказ одного выключателя при аварии приводит к отключению всех ис­точников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если ис­точниками питания являются мощные блоки турбогенератор—трансфор­матор, то пуск их после сброса нагрузки на время более 30 мин может за­нять несколько часов;

повреждение шиносоединительного выключателя равноценно КЗ на обеих системах шин, т. е. приводит к отключению всех присоединений;

большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;

необходимость установки шиносоедипительного, обходного выключа­телей и большого количества разъединителей увеличивает затраты на со­оружение РУ.

Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин.

На ТЭС и АЭС при числе присоединений 12-16 секционируется одна система шин, при большем числе присоединений — обе системы шин.

На подстанциях секционируется одна система шин при U = 220 кВ при числе присоединений 12—15 или при установке трансформаторов мощ­ностью более 125 MB-А; обе системы шин 110—220 кВ секционируются при числе присоединений более 15 [3].

Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение совмещенных шиносоединительного и об­ходного выключателей QOA (рис. 2.6, б). В нормальном режиме разъеди­нители QS1, QSO, QS2 включены и обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта одного выключателя отключают выключатель QOA и разъединитель QS2 и используют, обход­ной выключатель по его прямому назначению. В схемах с большим чис­лом линий количество таких переключений в год значительно, что приво­дит к усложнению эксплуатации, поэтому имеются тенденции к отказу от совмещения шиносоединительного и обходного выключателей [3].

В схеме с секционированными шинами при повреждении на шинах или при КЗ в линии и отказе выключателя теряется только 25 % присоединений (на время переключений), однако при повреждении в секционном выключа­теле теряется 50% присоединений.

Дли электростанций с мощными энергоблоками (300 МВт и более) уве­личить надежность схемы можно, присоединив источники или автотранс­форматоры связи через развилку из двух выключателей (рис. 2.6, в). Эти выключатели в нормальном режиме выполняют функции шиносоедини­тельного. При повреждении на любой системе шин автотрансформатор остается в работе, исключается возможность потери обеих систем шин.

Читайте также: Все виды летних шин

Видео:РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)Скачать

РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)

Д) Схема с двумя рабочими и обходной системами шин

Для РУ напряжением 110 кВ и выше с большим числом присоеди­нений широко применяется схема с двумя рабочими и обходной системами шин с одним выключателем на цепь (рис. 5-15, а). Как правило, в установках 110 кВ и выше применяется фиксированное распределение присоединений: линии Л1, Л2 и источник ИП1 при­соединении 1-й системе шин, линии ЛЗ, Л4 и источник питания ИП2 присоединены ко 2-й системе шин, перемычка с разъединителем Р включена и обходной выключатель служит одновременно шиносоединительным (ШСОВ).

При необходимости использования ШСОВ по прямому назначе­нию надо отключить его, разделив тем самым рабочие системы шин, затем отключить разъединитель Р и воспользоваться обходным вы­ключателем

Если размыкание шин недопустимо вследствие возможности на­рушения параллельной работы источников питания, то предвари­тельно переводят все присоединения на одну систему шин. Чем боль­ше присоединений к сборным шинам, тем больше операций необхо­димо произвести для освобождения обходного выключателя и тем большее время он будет занят для замены выключателей присоеди­нений, поэтому отказ от отдельного шиносоединительного выклю­чателя допустим при числе присоединений не более семи и мощности агрегатов меньше 160 МВт 5.

е) Схемас двумя системами шин и тремя выключателями на две цепи

Враспределительных устройствах 330—500 кВ применяется схе­ма с двумя системами шин и тремя выключателями на две цепи. Как видно из рис. 5-16, на шесть присоединений необходимо девять выключателей, т. е. на каждое присоединение «полтора» выключа­теля (отсюда происходит второе название схемы: «полуторная» или «схема с 3/2 выключателями на цепь»).

Каждое присоединение включено через два выключателя. Для отключения линии Л1 необходимо отключить выключатели В1, В2, для отключения, трансформатора Т1 — В2, ВЗ.

В нормальном режиме все вы­ключатели включены, обе систе­мы шин находятся под напряже­нием. Для ревизии любого вы­ключателя отключают его разъ­единители, установленные по обе стороны выключателя. Количе­ство операций для вывода в ре­визию — минимальное, разъеди­нители служат только для отде­ления выключателя при ремон­те, никаких оперативных пере­ключений ими не производят. Достоинством схемы является то, что при ревизии любого вы­ключателя все присоединения ос­таются в работе. Другим до­стоинством полуторной схемы является высокая ее надежность,

так как все цепи остаются в работе даже при повреждении на сбор­ных шинах. Так, например, при к. з. на первой системе шин отклю­чатся выключатели ВЗ, В6, В9, шины останутся без напряжения, но все присоединения сохранятся в работе. При равенстве числа источников питания и линий работа всех цепей сохраняется даже при отключении обеих систем шин; при этом может лишь на­рушиться параллельная работа на стороне повышенного напря­жения.

Схема позволяет в рабочем режиме без операций разъедините­лями производить опробование выключателей. Ремонт шин, очистка изоляторов, ревизия шинных разъединителей производится без нарушения работы цепей (отключается соответствующий ряд шин­ных выключателей), все цепи продолжают работать параллельно через оставшуюся под напряжением систему шин.

Две рабочие системы шин с обходной компоновка

ж) Схема с двумя системами шин и с четырьмя выключателями на три цепи

В схеме на рис. 5-17, ана девять присоединений требуется 12 выключателей, т. е. на каждое присоединение 4/3 выключателя. Наилучшие показатели схема имеет, если число линий в 2 раза меньше или больше числа трансформаторов.

Схема с 4/3 выключателя на присоединение имеет все достоинства полуторной схемы и кроме того:

схема более экономична (1,33 выключателя на присоединение вместо 1,5);

секционирование сборных шин требуется только при 15 присое­динениях и более;

Две рабочие системы шин с обходной компоновка

надежность схемы практически не снижается, если в одной из цепочек будут присоединены две линии и один трансформатор вместо двух трансформаторов и одной линии;

конструкция ОРУ по рассмотренной схеме достаточно экономич­на и удобна в обслуживании, если принять компановку с двухрядным расположением выключателей (рис. 5-17, б) 6.

Схема находит применение в РУ 330—500 кВ мощных КЭС.

Видео:Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШ

Схема с двумя рабочими и обходной системами шин.

В распределительных устройствах 110кВ с большим количеством присоединений широко применяется схема с двумя рабочими и обходной системами шин с одним выключателем на цепь (рис. 3-4).

Читайте также: Зимние шины в казани r17

В схеме применен отдельный шиносоединительный выключатель ШСВ, отказ от него допустим при числе присоединений не более семи и мощности агрегатов меньше 160 МВт. Установка отдельного ШСВ обеспечивает большую оперативную гибкость, хотя и увеличивает капитальные затраты.

Особенности схемы с двумя системами шин и схемы с обходной системой шин были рассмотрены ранее в §§ 3.2-3.3. Здесь следует отметить, что для РУ 110 кВ существенными становятся недостатки этих схем:

отказ одного выключателя при аварии приводит к отключению всех источников питания и линий, присоединенных к данной СШ, а если в работе находится одна СШ отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если источниками питания являются мощные блоки генератор-трансформатор, то пуск их после сброса нагрузки на время более 30 минут может занять несколько часов;

повреждение шиносоединительного выключателя равноценно кз на обеих системах шин, т.е. приводит к отключению всех присоединений;

большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;

необходимость установки шиносоединительного, обходного выключателей и большого количества разъединителей увеличивает затраты на сооружение РУ.

Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин. Дополнительные капитальные затраты могут оправдать себя только при большом количестве присоединений (более 12-16).

Сравнивая рассмотренные варианты, выбираем схему с двумя рабочими и обходной не секционированными системами шин.

Две рабочие системы шин с обходной компоновка

Рисунок 3-4 Схема с двумя рабочими и обходной системой шин

IV. Определить необходимость установки секционного реактора. Выбрать секционный реактор.

Схема замещения для расчета к.з. представлена на рис. 3-1, а. Для выяснения необходимости установки секционного реактора рассчитаем ток кз на шинах ГРУ при условии Хр=0 (т.е. без секционного реактора), и если этот ток окажется более максимального тока отключения маломасляных выключателей (90 кА), необходимо будет выбрать секционный реактор, ограничивающий ток кз.

Две рабочие системы шин с обходной компоновка

Нагрузку расположенную вблизи генераторов учитываем уменьшением ЭДС генераторов до . Влиянием относительно малой нагрузки собственных нужд и удаленных от места кз нагрузок пренебрегаем.

Две рабочие системы шин с обходной компоновка

Рисунок 4-1 Схемы замещения

Определим сопротивления схемы при базовой мощности Sб=1000МВА.

Две рабочие системы шин с обходной компоновка

Сопротивление трансформаторов Т1, Т2:

Две рабочие системы шин с обходной компоновка

Принимаем удельное сопротивление линий 0,4 Ом/км

Две рабочие системы шин с обходной компоновка

Сопротивление системы при заданной мощности короткого замыкания Sкз=1600МВА:

Две рабочие системы шин с обходной компоновка

Преобразуем схему в удобную для расчетов (рис. 4-1,б).

Хрез1=Хс+Хл=0,63+1,36=1,99

Две рабочие системы шин с обходной компоновка

Поскольку сначала делаем расчет без секционного реактора (Хр=0), то по рис. 4-1,в:

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Начальное значение периодической составляющей тока к.з. определяем из выражения:

Две рабочие системы шин с обходной компоновка, где Две рабочие системы шин с обходной компоновка— результирующее сопротивление ветви схемы; Iб- базовый ток; Две рабочие системы шин с обходной компоновка-ЭДС генератора.

Две рабочие системы шин с обходной компоновка

Тогда ток трехфазного к.з. от генератора Г-4

Две рабочие системы шин с обходной компоновка

Ток трехфазного к.з от системы и генераторов Г1-3

Две рабочие системы шин с обходной компоновка

Суммарное значение периодической составляющей в точке к.з.

Так как ток трехфазного к.з. больше 90кА, то необходимо установить секционный реактор. Реактор выбираем, исходя из номинального напряжения и номинального тока генератора.

Две рабочие системы шин с обходной компоновка

Uгном=6,3кВ Номинальный ток реактора можно выбрать по току, приближенно равному 0,6-0,7 Iг,ном. Выбираем 0,6Iг,ном=2,2кА.

Предполагаем к установке реактор РБГ-10-2500-0,2.

Uном=10кВ, Iном=2500А, Хр=0,2Ом, ток электродинамической стойкости iу=60кА, ток термической стойкости iт=23,6кА, допустимое время действия тока термической стойкости tт-8с, кроме этого по таблице 3.8 [1] находим Ку=1,956; Та=0,23с.

Приведем сопротивление реактора к базовым условиям.

Две рабочие системы шин с обходной компоновка

Преобразуем схему рис.4-1б к виду как на рисунке 4-2а,б. Здесь треугольник Хт1, Хт2, Хр преобразован в звезду Х1,Х2,Х3.

Две рабочие системы шин с обходной компоновка

Рисунок 4-2 Схемы замещения после преобразования треугольника в звезду

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Суммарное значение периодической составляющей при к.з. на шинах ГРУ с установленным реактором:

Найдем токи в оставшихся ветвях звезды, а потом токи в исходной схеме:

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Теперь выполним проверку стойкости реактора в режиме к.з.:

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка, где tоткл – время отключения к.з. релейной защитой. Его максимальное значение Две рабочие системы шин с обходной компоновка, т.е. при времени отключения защитой менее 18,8с реактор термически устойчив к к.з. Реально время отключения РЗА значительно меньше.

Выбранный реактор удовлетворяет всем предъявленным требованиям. С его применением значительно понизились токи к.з. (со 137,3кА до 64,2кА). Это позволит установить относительно дешевые маломасляные выключатели.

V. Выбрать схему собственных нужд электростанции.

Реакторы, через которые питаются с.н. присоединяются к шинам генераторного напряжения. Выбираем две рабочие секции с.н.

Читайте также: Шины nokian 175 65 r15

Номинальный ток реактора

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Рассчитаем ток к.з. за реактором в утяжеленном режиме. Схема замещения для этого режима показана на рисунке 5-1.

Две рабочие системы шин с обходной компоновка

Намечаем к установке на линии выключатель ВМП-10-630, Iоткл=20кА. Тогда

Две рабочие системы шин с обходной компоновка

Рис. 5-1 Схема

замещенияПредполагаем к установке реактор РБГ-10-1500-0,23, Iдин.ст=53кА, Iтерм.ст=20кА.

Две рабочие системы шин с обходной компоновка

Для проверки термической стойкости определяем тепловой импульс тока к.з.

Две рабочие системы шин с обходной компоновка

, где tоткл=0,2с Та.сх=0,23с для ветвей защищенных реактором с номинальным током 1000А и выше.

Две рабочие системы шин с обходной компоновка

Проверим стойкость выбранного реактора в режиме к.з.

Электродинамическая стойкость. Ку=1,956

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Остаточное напряжение на шинах ГРУ при к.з. за реактором:

Две рабочие системы шин с обходной компоновка

Выбранный тип реактора удовлетворяет предъявляемым к нему требованиям.

На рисунке 5-1 приведена схема питания СН. Все рабочее оборудование подключено к 1СШ, за исключением трансформатора связи Т2, который подключен к 2СШ. Шиносоединительный выключатель ШСВ2 нормально включен.

В этом случае, например, при аварии на 2 секции 1СШ ГРУ отключаются В5, В6, ВС1 и ШСВ2, затем защитой минимального напряжения отключается В10, после чего автоматически включаются В7, В15, восстанавливая питание с.н. от шин ВН через трансформатор связи Т2 подключенный к 2СШ. Далее оперативный персонал переключает все оборудование второй секции 1СШ на 2СШ и секция 2СН снова получает питание от рабочей секции 2СН.

Две рабочие системы шин с обходной компоновка

Рисунок 5-1 Схема собственных нужд ТЭЦ

VI. Выбрать линейные реакторы.

Планируем по два линейных сдвоенных реактора на секцию и по три кабельных линии на плечо реактора плюс по одной линии на двух их четырех реакторов (итого 26 линий). Потребители на генераторном напряжении потребляют 50 МВт, поэтому в нормальном режиме ток по кабельной линии

Две рабочие системы шин с обходной компоновка

Номинальный ток линии определяется ее нагрузкой в наиболее утяжеленном режиме, т.е. при отключении одной секции, тогда Imax,л=2Iном,р=2·0,22=0,44кА

Две рабочие системы шин с обходной компоновка

Выбираем трехжильный кабель с Uном=6кВ с медными жилами с бумажной пропитанной маслоканифольной массой изоляцией в алюминиевой оболочке, прокладываемый в земле, сечением 185мм², Iдоп.ном=0,44кА

Рассчитаем ток к.з. за реактором в утяжеленном режиме. Схема замещения для этого режима показана на рисунке 6-1.

Две рабочие системы шин с обходной компоновка

Намечаем к установке на линии выключатель ВМГ-10-630, Iоткл=20кА. Тогда

Две рабочие системы шин с обходной компоновка

Рис. 6-1 Схема Ток на одну ветвь реактора Imax.в=4Imax.л=4·0,44=1.76кА

замещенияПредполагаем к установке реактор РБСД-10-2х2500-0,20, Iдин.ст=60кА, Iтерм.ст=26кА.

Две рабочие системы шин с обходной компоновка

Для проверки термической стойкости кабеля определяем тепловой импульс тока к.з.

Две рабочие системы шин с обходной компоновка

, где tоткл=0,2с Та.сх=0,23с для ветвей защищенных реактором с номинальным током 1000А и выше.

Две рабочие системы шин с обходной компоновка

Минимальное сечение по термической стойкости

Две рабочие системы шин с обходной компоновка

, где С=143 для кабелей с медными сплошными жилами и бумажной изоляцией. Так как q>>qmin, то кабель проходит по термической стойкости с большим запасом.

Проверим стойкость выбранного реактора в режиме к.з.

Электродинамическая стойкость. Ку=1,956

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Остаточное напряжение на шинах ГРУ при к.з. за реактором:

Две рабочие системы шин с обходной компоновка

Выбранный тип реактора удовлетворяет предъявляемым к нему требованиям. Схема распределительной сети приведена на рисунке 6-2.

Две рабочие системы шин с обходной компоновка

Рисунок 6-2. Схема распределительной сети

VII. Расчет токов КЗ для выбора коммутационных аппаратов.

Две рабочие системы шин с обходной компоновка

Рисунок 7-1 Расчетная схема токов КЗ

7.1 Короткое замыкание в точке К-1 (шины ВН).

Две рабочие системы шин с обходной компоновка

Ветви генераторов Г1-4 симметричны по отношению к точке КЗ К-1. Поэтому сопротивление секционного реактора можно исключить из схемы замещения, так как оно включено между узлами одинакового потенциала и не влияет на ток. С учетом этого схема замещения для КЗ в точке К-1 будет иметь вид показанный на рисунке 7-2.

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Суммарный ток в точке К-1 Iп0к-1=5,61+2,52=8,13кА

Считаем ударные токи, предварительно выбрав ударные коэффициенты:

Ветвь энергосистемы 110кВ Ку=1,608

Две рабочие системы шин с обходной компоновка

ветви, состоящие из генераторов и повышающих трансформаторов (мощность генераторов 1000А)

Две рабочие системы шин с обходной компоновка

Кур=1,956

7.3 Короткое замыкание в точке К-3 (линии потребителей на генераторном напряжении за реактором).

Iп0к-3 и iук-3 были найдены ранее при расчете линейного реактора и равны

7.4 Короткое замыкание в точке К-4 (цепи с.н.)

Ранее был выбран реактор РБГ-10-1500-0,23. Приведем сопротивление реактора к базовым условиям.

Две рабочие системы шин с обходной компоновка

Схема замещения приведена на рисунке 7-3(а, б)

Две рабочие системы шин с обходной компоновка

Из предыдущих расчетов

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Тогда значение периодической составляющей от внешней сети

Две рабочие системы шин с обходной компоновка

Периодическая составляющая от эквивалентного двигателя секции СНРисунок 7-3 Схема замещения

Две рабочие системы шин с обходной компоновка

Две рабочие системы шин с обходной компоновка

Суммарное значение периодической составляющей

Внешняя сеть

Две рабочие системы шин с обходной компоновка

Кур=1,956

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле
    • Правообладателям
    • Политика конфиденциальности

    Автоподбор © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер

    🎥 Видео

    Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШСкачать

    Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШ

    Электрические подстанции #2 - Виды главных схем распределительных устройствСкачать

    Электрические подстанции #2 - Виды главных схем распределительных устройств

    ГЗШ Основная система уравнивания потенциаловСкачать

    ГЗШ Основная система уравнивания потенциалов

    Модель подстанцииСкачать

    Модель подстанции

    7. Подключение Modbus-модулей к шине RS-485Скачать

    7. Подключение Modbus-модулей к шине RS-485

    3.3 Системы оперативного тока подстанции 2 1Скачать

    3.3 Системы оперативного тока подстанции 2 1

    Лапидус А.В. Оперативные переключения глазами релейщика.Скачать

    Лапидус А.В. Оперативные переключения глазами релейщика.

    Подключение нескольких устройств, датчиков по I2C (АйТуСи) шинеСкачать

    Подключение нескольких устройств, датчиков по I2C (АйТуСи) шине

    Лапидус А.А. Схемы подстанцийСкачать

    Лапидус А.А. Схемы подстанций

    2-КТП Комплектная трансформаторная подстанцияСкачать

    2-КТП Комплектная трансформаторная подстанция

    РЗ #51 Дифференциальная защита шин (часть 1)Скачать

    РЗ #51 Дифференциальная защита шин (часть 1)

    Лекция 308. Шина I2CСкачать

    Лекция 308.  Шина I2C

    Делаем идеальные зазоры в дверях автомобиля)Скачать

    Делаем идеальные зазоры в дверях автомобиля)

    ЭСиПСТ Лекция 4 - Схемы распределительных устройствСкачать

    ЭСиПСТ Лекция 4 - Схемы распределительных устройств

    Скидывай друзьям, пускай пользуются! #тюнинг #авто #машинаСкачать

    Скидывай друзьям, пускай пользуются! #тюнинг #авто #машина

    Цветовая маркировка проводов и шинСкачать

    Цветовая маркировка проводов и шин

    Логическая защита шин. Принцип действия и особенностиСкачать

    Логическая защита шин. Принцип действия и особенности

    Введение в шину I2CСкачать

    Введение в шину I2C
Поделиться или сохранить к себе:
Технарь знаток