Две системы сборных шин с обходной системой схема

Для РУ 110 — 220 кВ с большим числом присоединений применяется схема с двумя рабочими и обходной системами шин с одним выключате­лем на цепь (рис. 2.6, а). Схема обла­дает всеми оперативными свойствами схем с двумя систе­мами сборных шин и, кроме того, предоставляет возмож­ность вывода в ремонт выключателя любой электрической цепи без перерыва в ее работе и отключения электричес­кой цепи обходным выключателем при неполадках в ра­боте выключателя цепи, когда отключение его невозможно (неисправен привод масляного выключателя, поврежден фарфор камер воздушного выключателя и т. д.).

Как правило, обе системы шин находятся в рабо­те при соответствующем фиксированном распределении всех присоедине­ний: линии W1, W3, W5 и трансформатор Т1 присоединены к первой системе шин Al, линии W2, W4, W6 и трансформатор Т2 присоединены ко второй системе шин А2, шиносоеденительный выключатель QA включен. Такое распределение присоединений увеличивает надежность схемы, так как при КЗ на шинах отключаются шиносоединительный выключатель QA и только половина присоединений. Если повреждение на шинах устойчи­вое, то отключившиеся присоединения переводят на исправную систему шин. Перерыв электроснабжения половины присоединений определяется длительностью переключений.

Две системы сборных шин с обходной системой схема

Рис. 2.6. Схема с двумя рабочими и обходной системами шин:

а – основная схема; б, в – вариант схем

Рассмотренная схема рекомендуется для РУ 110 — 220 кВ на стороне ВН и СН подстанций при числе присоединений 7-15 [3], а также на электростанциях при числе присоединений до 12.

Особенности схемы с двумя системами шин были рассмотрены ранее. Здесь следует отметить, что для РУ 110 кВ и выше суще­ственными становятся недостатки этой схемы:

отказ одного выключателя при аварии приводит к отключению всех ис­точников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если ис­точниками питания являются мощные блоки турбогенератор—трансфор­матор, то пуск их после сброса нагрузки на время более 30 мин может за­нять несколько часов;

повреждение шиносоединительного выключателя равноценно КЗ на обеих системах шин, т. е. приводит к отключению всех присоединений;

большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;

необходимость установки шиносоедипительного, обходного выключа­телей и большого количества разъединителей увеличивает затраты на со­оружение РУ.

Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин.

На ТЭС и АЭС при числе присоединений 12-16 секционируется одна система шин, при большем числе присоединений — обе системы шин.

На подстанциях секционируется одна система шин при U = 220 кВ при числе присоединений 12—15 или при установке трансформаторов мощ­ностью более 125 MB-А; обе системы шин 110—220 кВ секционируются при числе присоединений более 15 [3].

Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение совмещенных шиносоединительного и об­ходного выключателей QOA (рис. 2.6, б). В нормальном режиме разъеди­нители QS1, QSO, QS2 включены и обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта одного выключателя отключают выключатель QOA и разъединитель QS2 и используют, обход­ной выключатель по его прямому назначению. В схемах с большим чис­лом линий количество таких переключений в год значительно, что приво­дит к усложнению эксплуатации, поэтому имеются тенденции к отказу от совмещения шиносоединительного и обходного выключателей [3].

Читайте также: Шины в челябинске дэу

В схеме с секционированными шинами при повреждении на шинах или при КЗ в линии и отказе выключателя теряется только 25 % присоединений (на время переключений), однако при повреждении в секционном выключа­теле теряется 50% присоединений.

Дли электростанций с мощными энергоблоками (300 МВт и более) уве­личить надежность схемы можно, присоединив источники или автотранс­форматоры связи через развилку из двух выключателей (рис. 2.6, в). Эти выключатели в нормальном режиме выполняют функции шиносоедини­тельного. При повреждении на любой системе шин автотрансформатор остается в работе, исключается возможность потери обеих систем шин.

Видео:Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШ

Две системы сборных шин с обходной СШ

Схема применяется на напряжении 110-220 кВ при числе присоединений шесть и более (рисунок 5.6).

Две системы сборных шин с обходной системой схема

Рисунок 5.6 Схема «Две системы сборных шин с обходной СШ» с однорядным расположением выключателей.

Схема сочетает достоинства двух предыдущих, т.е. позволяет без отключения присоединений производить плановые ремонты выключателей и сборных шин.

Порядок вывода в ремонт линейного выключателя Q:

1. Собирают схему обходного выключателя QO. Включают разъединители QS1(если линия W4 питается с СШ А1) и QS2.

2. Включают обходной выключатель для проверки состояния изоляции обходной системы шин. Если операция прошла успешно, то обходной выключатель отключают.

3. Включают шинный разъединитель QS3.

4. Повторно включают обходной выключатель QO, создавая обходной путь с СШ А1 через QS1, QO, QS2, обходную систему шин и QS3 в линию.

5. Отключают выключатель Q, размыкают разъединители QS4 и QS5 (QS6 нормально отключен).

Пока выключатель Q на ремонте, его функции будет выполнять обходной выключатель QO. Например, при коротком замыкании на линии W3 релейная защита подействует на отключение QO.

На электростанциях схему эксплуатируют с фиксированным присоединением источников питания и линий, равномерно распределяя их между системами шин.

При числе присоединений от 12 до 15 одна из СШ секционируется. При числе присоединений 16 и более секционируется обе СШ. С целью экономии выключателей в случае секционирования рекомендуется объединять функции обходного и шиносоединительного выключателя. Фрагмент схемы с числом присоединений от 12 до 15 показан на рисунке 5.7.

Две системы сборных шин с обходной системой схема

При секционировании следует по возможности равномерно распределять по секциям линии связи с системой, линии, питающие нагрузку, резервные трансформаторы собственных нужд, блоки генератор – трансформатор и трансформаторы (автотрансформаторы) связи с системой (рисунок 5.8).

Две системы сборных шин с обходной системой схема

Рисунок 5.8 схема ОРУ с однорядным расположением выключателей

На рисунке 5.8 показана схема ОРУ с однорядным расположением выключателей, позволяющая ограничиться одной дорогой, упростить системы слива масла и противопожарной безопасности, если выключатели масляные многообъемные, или воздухоподачи, если выключатели воздушные.

При ограничении ширины площадки, выделяемой под ОРУ, возможна установка выключателей в два ряда (рисунок 5.9).

Две системы сборных шин с обходной системой схема

Резервные (РТСН) или пускорезервные трансформаторы собственных нужд (ПРТСН) рекомендуется подключать к точке надежного питания на сторону среднего напряжения автотрансформатора (АТ) связи. Фрагмент схемы показан на рисунке 5.10.

Две системы сборных шин с обходной системой схема

Такой способ подключения позволяет сохранить в работе РТСН при коротком замыкании на сборных шинах и обеспечить возможность проведения ремонта выключателя Q. Во время ремонта его функции будет выполнять обходной выключатель QO.

Схемы со сборными шинами имеют очень широкое распространение, их очевидными достоинствами являются простота, наглядность, экономичность.

Основной недостаток состоит в том, что оперативные переключения в них производятся персоналом вручную с помощью разъединителей, не имеющих дистанционного управления. В экстренных ситуациях (ночью, в сложных погодных условиях) именно ошибочные действия персонала зачастую приводят к возникновению аварийных ситуаций.

Читайте также: Направляющая шина для циркулярной пилы bosch pks 66a

По этой причине схемы со сборными шинами на напряжениях 330 кВ и более не применяются.

Схемы многоугольников

Простейшим многоугольником является треугольник (см. рисунок 5.11).

Две системы сборных шин с обходной системой схема

Рисунок 5.11 Схема «Треугольник».

Область применения схемы – от 35 кВ и более. Ее отличают простота, наглядность и экономичность. Однако на электростанциях, имеющих в основном потребителей первой категории, она применяется крайне редко. Питать потребителей первой категории от двух источников по одной линии, как и от одного источника по двум, нежелательно по соображениям надежности.

Более широкое распространение получила схема «Четырехугольник» (рисунок 5.12).

Две системы сборных шин с обходной системой схема

Рисунок 5.12 Схема «Четырехугольник».

Схема позволяет производить плановые ремонты выключателей без отключения присоединений. Однако при совпадении КЗ на линии в точке К1 с ремонтом выключателя Q1, релейная защита линии отключит выключатели Q2 и Q3 и вся схема обесточится.

На рисунке 5.13 показана схема четырехугольника с однорядным расположением выключателей, которая в аналогичной ситуации сохраняет один из источников питания и неповрежденную линию в работе.

Две системы сборных шин с обходной системой схема

Однорядное расположение выключателей позволяет производить расширение схемы, преобразуя ее в схему «пятиугольника» (рисунок 5.14). Конструкция ОРУ и эксплуатация выключателей при такой компоновке заметно упрощается. На всех присоединениях обязательно устанавливаются разъединители. При КЗ на любой линии или источнике питания защита действует на отключение двух выключателей. После этого размыкают разъединитель и включают выключатели, восстанавливая «кольцо».

Две системы сборных шин с обходной системой схема

Рисунок 5.14. Схема «Пятиугольник».

Схема «Пятиугольник», иногда ее называют схемой расширенного четырехугольника, применяется на напряжении 110 кВ и более. На напряжениях 110 и 220 кВ она является альтернативой схеме «Одна система шин с обходной», явно превосходя ее в надежности и экономичности.

Строительство любой электростанции осуществляется в течение нескольких лет. Между пуском первой очереди и следующими проходят годы. Иногда действующие ЭС расширяют и на них вводят новые блоки. Чтобы при расширении сохранить в работе существующую схему, ее дополняют. Например, к имеющемуся четырехугольнику подключают еще один. По такому принципу создают схемы связанных четырехугольников (рисунок 5.15) и шестиугольников.

Две системы сборных шин с обходной системой схема

Рисунок 5.15. Схема связанных четырехугольников.

Выключатели в перемычках ухудшают экономические показатели схемы и усложняют конструкцию распределительного устройства. Поэтому при большом количестве присоединений на напряжении 330 кВ и выше применяют схемы с многократным однотипным присоединением элементов.

Видео:РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)Скачать

РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)

Две системы сборных шин с обходной

Секционированная система сборных шин с обходной

Обходная система шин позволяет на время ремонта выключателя какого-либо присоединения заменить его обходным выключателем.

Две системы сборных шин с обходной системой схема

Две системы сборных шин с обходной системой схема

Применяется на напряжениях 110 – 500 кВ. ОВ позволяет без перерыва питания вывести в ремонт выключатель любого присоединения. ШСВ (шиносоединительный выключатель) – без перерыва питания переводить присоединения с одной системы шин на другую и выводить в ремонт одну из СШ.

1. При КЗ на одной системе шин теряется только половина присоединений.

2. При выводе в ремонт одной системы шин питание присоединений переводится на вторую без перерыва питания.

3. Если требуется вывод в ремонт выключателя одного из присоединений, его заменяют обходным без перерыва питания.

1. При КЗ на линии и отказе ее выключателя должно сработать УРОВ (устройство резервирования отказа выключателя) и отключить все выключатели той системы шин, к которой подключено поврежденное присоединение.

Читайте также: Норма восстановление износа ремонт шин

2. При КЗ на одной из СШ теряется половина присоединений, а если при этом произошел отказ ШСВ, то теряются все присоединения.

Полуторная схема сборных шин

Схема еще носит название “3/2” – 3 выключателя на 2 присоединения.

а) полуторная схема сборных шин без чередования присоединений

Две системы сборных шин с обходной системой схема

1. При КЗ на одной из СШ отключаются выключатели 1-го или 3-го ряда, а все присоединения остаются в работе.

2. При выводе в ремонт I или II СШ не требуется сложных переключений. Необходимо отключить выключатели 1-го или 3-го ряда.

3. При КЗ на линии отключаются 2 её выключателя и в случае отказа одного из них либо гасится система шин без потери присоединений, либо теряется одна линия или один генератор.

4. При ремонте одной из СШ и КЗ на другой потери питания присоединений не происходит. Однако блоки выделяются каждый на свою линию.

1. Дороже, чем все предыдущие схемы, т.к. содержит в полтора раза больше выключателей.

2. Большие эксплуатационные расходы за счет большого объема ремонтных работ, так как при каждом отключении присоединения отключаются 2 выключателя – большой износ выключателей.

3. Если в ремонте находится один из выключателей 1-го или 3-го ряда и возникло КЗ на одном из присоединений, то теряем второе присоединение этого поля.

4. Большая сложность релейной защиты.

б) полуторная схема с чередованием присоединений

Две системы сборных шин с обходной системой схема

Преимущество данной схемы перед предыдущей состоит в том, что при ремонтах выключателей 2-го ряда и при отказе выключателей 1-го или 3-го ряда при КЗ на линии количество потерь блока будет в 2 раза меньше. При отказе выключателя произойдет погашение системы шин и потеря присоединения, выключатель которого ремонтируется. Однако, поврежденная линия может быть отключена разъединителем и питание системы шин вместе с потерянным присоединением восстановлено.

Если в схеме количество цепочек выключателей будет больше 5, то шины рекомендуется секционировать выключателем.

Благодаря высокой надежности и гибкости схема находит широкое применение в распредустройствах (РУ) 330 – 750 кВ на мощных электростанциях.

На узловых подстанциях такая схема применяется при числе присоединений восемь и более. При меньшем числе присоединений линии включаются в цепочки из трех выключателей, а трансформаторы присоединяются к шинам без выключателей, образую блок трансформатор – шины.

Схема с двумя системами шин и четырьмя выключателями на три присоединения (схема 4/3)

Схема наиболее эффективна, если число линий в 2 раза меньше или больше числа источников.

Имеет все достоинства полуторной схемы, а кроме того:

1. Более экономична (1,33 выключателя на присоединение вместо 1,5);

2. Секционирование сборных шин требуется при числе присоединений 15 и более;

Две системы сборных шин с обходной системой схема

3. Надежность схемы практически не снижается, если в цепочке будут присоединены две линии и один трансформатор вместо одной линии и дух трансформаторов.

1. Все недостатки, которые присущи схеме 3/2;

2. В связи с тем, что в этой схеме выключателей среднего ряда в 2 раза больше, чем в схеме 3/2, то при отказах этих выключателей вероятность потери второго присоединения будет выше.

Схема может выполняться с 1, 2, 3 или 4-х рядным расположением выключателей. Наиболее удачным является двухрядное расположение выключателей:

Две системы сборных шин с обходной системой схема

LR ставятся для компенсации емкостного тока, генерируемого ЛЭП на 500 кВ и выше.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет


🔍 Видео

Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШ

Лапидус А.А. Схема распределительных устройств (РУ): 2СШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 2СШ

Лапидус А.А. Схема распределительных устройств (РУ): 1СШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 1СШ

Электрические подстанции #2 - Виды главных схем распределительных устройствСкачать

Электрические подстанции #2 - Виды главных схем распределительных устройств

Модель подстанцииСкачать

Модель подстанции

Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)Скачать

Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)

Лапидус А.А. Схема распределительных устройств (РУ): квадратСкачать

Лапидус А.А. Схема распределительных устройств (РУ): квадрат

Лапидус А.А. Схемы подстанцийСкачать

Лапидус А.А. Схемы подстанций

ЭСиПСТ Лекция 4 - Схемы распределительных устройствСкачать

ЭСиПСТ Лекция 4 - Схемы распределительных устройств

3.1 ДЗШ 110 кВ УРОВ 110 кВ 1Скачать

3.1 ДЗШ 110 кВ  УРОВ 110 кВ 1

Лапидус А.А. Схема распределительных устройств (РУ): 3/2Скачать

Лапидус А.А. Схема распределительных устройств (РУ): 3/2

3.3 Системы оперативного тока подстанции 2 1Скачать

3.3 Системы оперативного тока подстанции 2 1

Пример расчета и оформления схемы электроснабженияСкачать

Пример расчета и оформления схемы электроснабжения

2-КТП Комплектная трансформаторная подстанцияСкачать

2-КТП Комплектная трансформаторная подстанция

РЗ #51 Дифференциальная защита шин (часть 1)Скачать

РЗ #51 Дифференциальная защита шин (часть 1)

Однолинейная схема электроснабжения предприятия. Часть 2.Скачать

Однолинейная схема электроснабжения предприятия. Часть 2.

Логическая защита шин. Принцип действия и особенностиСкачать

Логическая защита шин. Принцип действия и особенности

Комплектная трансформаторная подстанция блочная, КТПБ(М)-СЭЩ 110 кВ Электрощит-СамараСкачать

Комплектная трансформаторная подстанция блочная, КТПБ(М)-СЭЩ 110 кВ Электрощит-Самара
Поделиться или сохранить к себе:
Технарь знаток