Движение цилиндра по наклонной плоскости задача

Авто помощник

Видео:ЗАДАЧИ НА НАКЛОННУЮ ПЛОСКОСТЬ - не ГРОБ! КАК ТАКИЕ РЕШАТЬ?Скачать

ЗАДАЧИ НА НАКЛОННУЮ ПЛОСКОСТЬ - не ГРОБ! КАК ТАКИЕ РЕШАТЬ?

Движение по наклонной плоскости тела: скорость, трение, время

Движение цилиндра по наклонной плоскости задача

Динамика и кинематика — это два важных раздела физики, которые изучают законы перемещения объектов в пространстве. Первый рассматривает действующие на тело силы, второй же занимается непосредственно характеристиками динамического процесса, не вникая в причины того, что его вызвало. Знание этих разделов физики необходимо применять для успешного решения задач на движение по наклонной плоскости. Рассмотрим этот вопрос в статье.

Видео:Скатывание цилиндров с наклонной плоскостиСкачать

Скатывание цилиндров с наклонной плоскости

Основная формула динамики

Движение цилиндра по наклонной плоскости задача

Конечно же, речь идет о втором законе, который постулировал Исаак Ньютон в XVII веке, изучая механическое движение твердых тел. Запишем его в математической форме:

Действие внешней силы F¯ вызывает появление линейного ускорения a¯ у тела с массой m. Обе векторные величины (F¯ и a¯) направлены в одну и ту же сторону. Сила в формуле является результатом действия на тело всех сил, которые присутствуют в системе.

В случае движения вращения второй закон Ньютона записывается в виде:

Здесь M и I — моменты силы и инерции, соответственно, α — угловое ускорение.

Видео:Скатывание тела (колеса, цилиндра) по наклонной плоскостиСкачать

Скатывание тела (колеса, цилиндра) по наклонной плоскости

Формулы кинематики

Решение задач на движение по наклонной плоскости требует знания не только главной формулы динамики, но и соответствующих выражений кинематики. Они связывают в равенства ускорение, скорость и пройденный путь. Для равноускоренного (равнозамедленного) прямолинейного движения применяются следующие формулы:

Здесь v0 — значение начальной скорости тела, S — пройденный за время t путь вдоль прямолинейной траектории. Знак «+» следует поставить, если скорость тела увеличивается с течением времени. В противном случае (равнозамедленное движение) следует использовать в формулах знак «-«. Это важный момент.

Если движение осуществляется по круговой траектории (вращение вокруг оси), тогда следует использовать такие формулы:

Здесь α и ω — угловые ускорение и скорость, соответственно, θ — угол поворота вращающегося тела за время t.

Линейные и угловые характеристики друг с другом связаны формулами:

Видео:Урок 101. Скатывание тела с наклонной плоскостиСкачать

Урок 101. Скатывание тела с наклонной плоскости

Движение по наклонной плоскости: силы

Под этим движением понимают перемещение некоторого объекта вдоль плоской поверхности, которая наклонена под определенным углом к горизонту. Примерами может служить соскальзывание бруска по доске или качение цилиндра по металлическому наклоненному листу.

Читайте также: Стенка цилиндра как называется

Для определения характеристик рассматриваемого типа движения необходимо в первую очередь найти все силы, которые действуют на тело (брусок, цилиндр). Они могут быть разными. В общем случае это могут быть следующие силы:

  • тяжести;
  • реакции опоры;
  • трения качения и/или скольжения;
  • натяжение нити;
  • сила внешней тяги.

Первые три из них присутствуют всегда. Существование последних двух зависит от конкретной системы физических тел.

Чтобы решать задачи на перемещение по плоскости наклонной необходимо знать не только модули сил, но и их направления действия. В случае, если тело по плоскости скатывается, сила трения неизвестна. Однако она определяется из соответствующей системы уравнений движения.

Движение цилиндра по наклонной плоскости задача

Видео:Наклонная плоскость. Расстановка сил | 50 уроков физики (6/50)Скачать

Наклонная плоскость. Расстановка сил | 50 уроков физики (6/50)

Методика решения

Решения задач данного типа начинается с определения сил и их направлений действия. Для этого в первую очередь рассматривают силу тяжести. Ее следует разложить на два составляющих вектора. Один из них должен быть направлен вдоль поверхности наклонной плоскости, а второй должен быть ей перпендикулярен. Первая составляющая силы тяжести, в случае движения тела вниз, обеспечивает его линейное ускорение. Это происходит в любом случае. Вторая равна силе реакции опоры. Все эти показатели могут иметь различные параметры.

Движение цилиндра по наклонной плоскости задача

Сила трения при движении по наклонной плоскости всегда направлена против перемещения тела. Если речь идет о скольжении, то вычисления довольно просты. Для этого следует использовать формулу:

Где N — реакция опоры, µ — коэффициент трения, не имеющий размерности.

Если в системе присутствуют только указанные три силы, тогда их результирующая вдоль наклонной плоскости будет равна:

Здесь φ — это угол наклона плоскости к горизонту.

Зная силу F, можно по закону Ньютона определить линейное ускорение a. Последнее, в свою очередь, используется для определения скорости движения по наклонной плоскости через известный промежуток времени и пройденного телом расстояния. Если вникнуть, то можно понять, что все не так уж и сложно.

В случае, когда тело скатывается по наклонной плоскости без проскальзывания, суммарная сила F будет равна:

Где Fr — сила трения качения. Она неизвестна. Когда тело катится, то сила тяжести не создает момента, поскольку приложена к оси вращения. В свою очередь, Fr создает следующий момент:

Учитывая, что мы имеем два уравнения и две неизвестных (α и a связаны друг с другом), можно легко решить эту систему, а значит, и задачу.

Теперь рассмотрим, как использовать описанную методику при решении конкретных задач.

Читайте также: Охлаждающая жидкость во всех цилиндрах

Видео:Скатывание тележки с наклонной плоскости.Скачать

Скатывание тележки с наклонной плоскости.

Задача на движение бруска по наклонной плоскости

Движение цилиндра по наклонной плоскости задача

Деревянный брусок находится в верхней части наклонной плоскости. Известно, что она имеет длину 1 метр и располагается под углом 45 o . Необходимо вычислить, за какое время брусок опустится по этой плоскости в результате скольжения. Коэффициент трения принять равным 0,4.

Записываем закон Ньютона для данной физической системы и вычисляем значение линейного ускорения:

a = g*(sin(φ) — µ*cos(φ)) ≈ 4,162 м/с 2

Поскольку нам известно расстояние, которое должен пройти брусок, то можно записать следующую формулу для пути при равноускоренном движении без начальной скорости:

Откуда следует выразить время, и подставить известные значения:

Таким образом, время движения по наклонной плоскости бруска составит меньше секунды. Заметим, что полученный результат от массы тела не зависит.

Видео:Урок 87. Движение по наклонной плоскости (ч.1)Скачать

Урок 87. Движение по наклонной плоскости (ч.1)

Задача со скатывающимся по плоскости цилиндром

Движение цилиндра по наклонной плоскости задача

Цилиндр радиусом 20 см и массой 1 кг помещен на наклонную под углом 30 o плоскость. Следует вычислить его максимальную линейную скорость, которую он наберет при скатывании с плоскости, если ее длина составляет 1,5 метра.

Запишем соответствующие уравнения:

Момент инерции I цилиндра вычисляется по формуле:

Подставим это значение во вторую формулу, выразим из нее силу трения Fr и заменим полученным выражением ее в первом уравнении, имеем:

Мы получили, что линейное ускорение не зависит от радиуса и массы скатывающегося с плоскости тела.

Зная, что длина плоскости составляет 1,5 метра, найдем время движения тела:

Тогда максимальная скорость движения по наклонной плоскости цилиндра будет равна:

Подставляем все известные из условия задачи величины в конечную формулу, получаем ответ: v ≈ 3,132 м/c.

Видео:ДВИЖЕНИЕ ПО НАКЛОННОЙ ПЛОСКОСТИ | механика 10 классСкачать

ДВИЖЕНИЕ ПО НАКЛОННОЙ ПЛОСКОСТИ | механика 10 класс

Скатывание тел с наклонной плоскости

С тем, чтобы проиллюстрировать применение законов динамики твёрдого тела, решим задачу о скатывании цилиндра с наклонной плоскости (рис. 10.5).

Сплошной цилиндр массы m и радиуса R скатывается без проскальзывания с наклонной плоскости. Угол наклона плоскости — a, а высота Н (Н » R). Начальная скорость цилиндра равна нулю. Определим время скатывания — Т и скорость центра масс цилиндра у основания наклонной плоскости.

При качении цилиндра на него действуют три силы: сила тяжести , упругая сила реакции опоры и сила трения покоя (ведь качение без проскальзывания!).

Представим это движение суммой двух движений: поступательного со скоростью VC, с которой движется ось цилиндра, и вращательного вокруг оси цилиндра с угловой скоростью w.

Читайте также: Главный цилиндр сцепления уаз буханка схема

Эта связь скоростей поступательного и вращательного движений следует из условия «движение без проскальзывания».

Продифференцировав уравнение (10.9) по времени, получим соотношение углового и линейного ускорений цилиндра:

Воспользовавшись теоремой о движении точки центра масс, опишем поступательное движение цилиндра:

Для описания вращения воспользуемся основным уравнением динамики вращательного движения:

Спроецировав уравнение (10.10) на направления осей x и y, получим два скалярных уравнения:

Обратимся теперь к уравнению (10.11). Из трёх названных сил момент относительно оси цилиндра создаёт только сила трения:

Момент инерции сплошного цилиндра относительно его оси равен (см. лекцию №9):

Учитывая всё это, уравнение (10.11) перепишем так:

Решая совместно уравнения (10.12) и (10.14), получим следующие значения неизвестных величин:

Из уравнения (10.15) следует, что с увеличением угла наклона a должна возрастать и сила трения покоя Fтр. Но, как известно, её рост ограничен предельным значением:

Так как сила трения покоя (10.15) не может превышать предельного значения (10.17), то должно выполняться неравенство:

Отсюда следует, что скатывание будет происходить без проскальзывания до тех пор, пока угол a не превзойдёт значения aпред:

Здесь m — коэффициент трения цилиндра по плоскости.

Линейное ускорение цилиндра (10.16) величина неизменная, следовательно, поступательное движение цилиндра равноускоренное. При таком движении без начальной скорости цилиндр достигнет основания наклонной плоскости за время:

Здесь: l = — длина плоскости;

Вычислим конечную скорость поступательного движения оси цилиндра:

Заметим, что эту задачу можно решить проще, воспользовавшись законом сохранения механической энергии.

В системе, правда, присутствует сила трения, но её работа равна нулю, поскольку точка приложения этой силы в процессе спуска остаётся неподвижной: ведь движение происходит без проскальзывания. Раз нет работы силы трения, механическая энергия системы не меняется.

Рассмотрим энергию цилиндра в начальный момент — на высоте h и в конце спуска. Полная энергия цилиндра в этих положениях одинакова:

Вспомним, что и . Тогда уравнение закона сохранения энергии можно переписать так:

Отсюда легко найдём конечную скорость цилиндра:

которая блестяще подтверждает полученный нами ранее результат (10.19).

Лекция 11 «Элементы механики жидкости»

1. Давление жидкости. Законы гидростатики.

2. Стационарное течение жидкости. Уравнение неразрывности потока.

3. Основной закон динамики для идеальной жидкости. Уравнение Бернулли.

4. Применение уравнения Бернулли для решения задач гидродинамики.

📺 Видео

Движение тела по наклонной плоскостиСкачать

Движение тела по наклонной плоскости

Урок 88. Движение по наклонной плоскости (ч.2)Скачать

Урок 88. Движение по наклонной плоскости (ч.2)

Цилиндр скатывается с наклонной плоскостиСкачать

Цилиндр скатывается с наклонной плоскости

Скатывание цилиндров с наклонной плоскостиСкачать

Скатывание цилиндров с наклонной плоскости

Скатывание тележки с отвесом с наклонной плоскостиСкачать

Скатывание тележки с отвесом с наклонной плоскости

ЕГЭ Физика 2024 Интересная задача 30 из реального варианта 2023 (цилиндр на наклонной плоскости)Скачать

ЕГЭ Физика 2024 Интересная задача 30 из реального варианта 2023 (цилиндр на наклонной плоскости)

Скатывание тел с наклонной плоскостиСкачать

Скатывание тел с наклонной плоскости

Какой цилиндр скатится быстрее: сплошной или полый? Разбор задачи.Скачать

Какой цилиндр скатится быстрее: сплошной или полый? Разбор задачи.

Соскальзывание бруска с наклонной плоскости.Скачать

Соскальзывание бруска с наклонной плоскости.

Движение по наклонной плоскости. Решение задач.Скачать

Движение по наклонной плоскости. Решение задач.

Наклонная плоскостьСкачать

Наклонная плоскость

Mechanism Simulation using Creo Parametric. Скатывание цилиндра по наклонной плоскостиСкачать

Mechanism Simulation using Creo Parametric. Скатывание цилиндра по наклонной плоскости
Поделиться или сохранить к себе:
Технарь знаток