Электрический вал и его применение в электроприводе станков

Электрический вал и его применение в электроприводе станков

В статье рассмотрены устройство, принцип действия и примеры использования электрических систем синхронного вращения (электрический вал) в станках и установках.

Допустим, что два вала, не имеющие механической связи друг с другом, должны вращаться с одинаковыми скоростями, не поворачиваясь друг относительно друга. Для обеспечения такого синхронного и синфазного вращения с двигателями Д1 и Д2, которые вращают соответственно валы I и II (рис. 1), связывают вспомогательные асинхронные машины А1 и А2 с фазными роторами. Роторные обмотки этих машин соединяют друг с другом встречно.

Если частоты вращения обеих машин и положения их роторов одинаковые, то электродвижущие силы, наведенные в обмотках роторов машин А1 и А2, равны и направлены навстречу друг другу (рис. 2, а), и ток в цепи роторов не протекает.

Предположим, что направление вращения поля вспомогательных машин совпадает с направлением вращения их роторов. При замедлении вращения машины А2 ее ротор отстанет от ротора А1, вследствие чего э. д. с. Ер2, наведенная в обмотке ротора, сместится по фазе в сторону опережения (рис. 2, б), и в цепи роторов машин А1 и А2 под действием векторной суммы э. д. с. Е появится уравнительный ток I .

Электрический вал и его применение в электроприводе станков

Рис. 1. Схема синхронной связи

Электрический вал и его применение в электроприводе станков

Рис. 2. Векторные диаграммы системы синхронной связи

Вектор тока I будет отставать от вектора э. д. с. Е на угол φ . Проекция вектора тока I на вектор э. д. с. Ер2 совпадает с этим вектором по направлению. Проекция вектора тока на вектор э. д. с. Ер1 направлена навстречу ему. Из этого следует, что машина А2 будет работать в режиме двигателя, а машина А1 — в режиме генератора. При этом вал машины А2 получит ускорение, а вал машины A1 — замедление. Таким образом, машины разовьют моменты, восстанавливающие синхронное вращение валов I и II и прежнее согласованное положение в пространстве роторов машин А1 и А2. Роторы этих машин могут вращаться как по направлению вращения поля, так и в противоположном направлении.

Данная система носит название электрической системы синхронного вращения . Ее называют также электрическим валом . Система синхронного вращения может заменить, например, ходовые винты у токарно-винторезных станков.

Так как цепи подачи металлорежущих станков по сравнению с цепями главного движения потребляют обычно малую мощность, то для синхронизации главного движения с подачей может быть применена более простая схема синхронного вращения (рис. 3 ). В этом случае неизбежно постоянное рассогласование между положениями роторов машин А1 и А2, без чего в цепи ротора машины А2 не было бы тока и она не смогла бы преодолеть момент сил сопротивления цепи подачи. Так как машина А2 получает питание от статора и ротора, то при данной системе электрического вала требуется шестипроводная подводка к двигателю, установленному во многих случаях на движущемся узле станка, условно показанном на рисунке штриховой линией.

Электрический вал и его применение в электроприводе станков

Рис. 3. Системы синхронной связи тяжелого токарно-винторезного станка

В пределах углового рассогласования, не превышающего 90°, электрический синхронизирующий момент возрастает. Для обеспечения значительного синхронизирующего момента машины синхронной связи при всех возможных угловых частотах вращения должны работать с большими скольжениями (не менее 0,3 — 0,5). Поэтому во избежание недопустимого нагрева эти машины должны быть достаточно больших размеров.

Читайте также: 5255270 звездочка распределительного вала

Мощность машин дополнительно увеличивают, стремясь исключить влияние колебаний нагрузки и сил трения. Применяют также механические передачи, понижающие частоту вращения валов станка, а следовательно, и величину угловой ошибки, приведенной к валу станка. Перед началом работы электрического вала асинхронные машины А1 и А2 включают на однофазное питание. При этом ротор машины А2 занимает исходное положение, согласованное с положением ротора машины А1.

Системы синхронного вращения рационально применять для тяжелых станков, так как изготовление длинных ходовых винтов связано со значительными трудностями. Кроме того, с увеличением длины винтов или валов, вследствие их скручивания, точность согласования взаимного расположения частей станка уменьшается. В системе электрического вала расстояние между валами никакого влияния на точность работы оказать не может.

При использовании электрического вала исключаются, механические связи суппортов со шпинделем и сильно упрощается кинематическая схема. Существенным недостатком систем электрического вала в тяжелых станках является возможность порчи дорогостоящей заготовки при перерыве в электроснабжении, так как при этом сразу возникает рассогласование. В некоторых случаях при такой аварии порча заготовки может быть предотвращена путем быстрого автоматического отвода инструмента.

Для станкостроения интерес представляет схема с двумя одинаковыми асинхронными двигателями с фазными роторами (рис. 4). Так как цепь обоих роторов замкнута на реостат R, то при подключении двигателей к сети переменного тока оба ротора начинают вращаться.

Электрический вал и его применение в электроприводе станков

Рис. 4. Схема синхронной связи с роторным реостатом

Помимо токов, протекающих в обмотках роторов и реостате, в цепи роторов обеих машин течет уравнительный ток. Наличие этого тока обусловливает появление синхронизирующего момента, вследствие чего машины вращаются синхронно. Такая система может быть использована для подъема и опускания поперечин крупных строгальных, продольно-фрезерных и карусельных станков.

Благодаря системе электрического вала решается проблема согласованного движения конвейеров, входящих в единый производственный комплекс. Наибольшее практическое применение в этом случае получил вариант синхронного вращения двигателей с общим преобразователем частоты.

Кроме рассмотренных систем электрического вала для станкостроения разрабатывались и применялись и другие системы с машинами переменного тока, в том числе однофазные системы и системы с синхронными двигателями специальной конструкции.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Видео:ТЕХНИКА БЕЗОПАСНОСТИ. Вид Грубейшего Нарушения ТРЕБОВАНИЙ ТБ при работе на СТАНКАХ.Скачать

ТЕХНИКА БЕЗОПАСНОСТИ. Вид Грубейшего Нарушения ТРЕБОВАНИЙ ТБ при  работе на СТАНКАХ.

Электродвигатели

В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.

По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.

Областью науки и техники изучающей электрические машины является — электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.

Видео:Вот, что можно сделать из моторчика дворников и редуктора болгарки! Гениальная самоделка!Скачать

Вот, что можно сделать из моторчика дворников и редуктора болгарки! Гениальная самоделка!

Конструкция электродвигателя

Основными компонентами вращающегося электродвигателя являются статор и ротор. Статор — неподвижная часть, ротор — вращающаяся часть.

Электрический вал и его применение в электроприводе станков

У большей части электродвигателей ротор располагается внутри статора. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Видео:КАК РАБОТАЕТ МОТОР ЭЛЕКТРОСАМОКАТА/ЭЛЕКТРОВЕЛОСИПЕДА?Скачать

КАК РАБОТАЕТ МОТОР ЭЛЕКТРОСАМОКАТА/ЭЛЕКТРОВЕЛОСИПЕДА?

Принцип работы электродвигателя

Электрический вал и его применение в электроприводе станков

Электрический вал и его применение в электроприводе станков

Электрический вал и его применение в электроприводе станков

Электрический вал и его применение в электроприводе станков

Видео:Изготовление валов для любого оборудования и станков. Обработка валов на токарных станках.Скачать

Изготовление валов для любого оборудования и станков. Обработка валов на токарных станках.

Классификация электродвигателей

  • Универсальный
  • Репульсионный
  • КДПТ с обмоткой возбуждения
      Включение обмотки
    • Независимое
    • Последовательное возбуждения
    • Параллельное
    • Комбинированное
    • БДПТ
      (Бесколлекторный двигатель + ЭП |+ ДПР)
    • ВРД
      (Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
    • Трехфазный
      (многофазный)
      • АДКР
      • АДФР
      • с пусковой обмоткой
      • с экранированными полюсами
      • с асимметричным магнитопроводом
      • СДОВ
        (с контактными кольцами и щетками) —>
      • СДПМ 5 —>
        • СДПМВ
        • СДПМП
        • Гибридный

        Читайте также: Тефлоновый валы для бразер

        1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
        2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря [5].
        3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля [1].
        4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
        5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
        • КДПТ — коллекторный двигатель постоянного тока
        • БДПТ — бесколлекторный двигатель постоянного тока
        • ЭП — электрический преобразователь
        • ДПР — датчик положения ротора
        • ВРД — вентильный реактивный двигатель
        • АДКР — асинхронный двигатель с короткозамкнутым ротором
        • АДФР — асинхронный двигатель с фазным ротором
        • СДОВ — синхронный двигатель с обмоткой возбуждения

        Видео:Работа энкодераСкачать

        Работа энкодера

        Типы электродвигателей

        Коллекторные электродвигатели

        Коллекторная машина — вращающаяся электрическая машина, у которой хотя бы одна из обмоток, участвующих в основном процессе преобразования энергии, соединена с коллектором [1]. В коллекторном двигателе щеточно-коллекторный узел выполняет функцию датчика положения ротора и переключателя тока в обмотках.

        Электрический вал и его применение в электроприводе станков

        Универсальный электродвигатель

        Электрический вал и его применение в электроприводе станков

        Коллекторный электродвигатель постоянного тока

        Бесколлекторные электродвигатели

        У бесколлекторных электродвигателей могут быть контактные кольца с щетками, таким образом не надо путать бесколлекторные и бесщеточные электродвигатели.

        Бесщеточная машина — вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без скользящих электрических контактов [1].

        Асинхронный электродвигатель

        Cинхронный электродвигатель

        Видео:Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбезСкачать

        Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбез

        Специальные электродвигатели

        Серводвигатель

        Видео:Введение в автоматизированный электропривод, 1976Скачать

        Введение в автоматизированный электропривод, 1976

        Основные параметры электродвигателя

        Момент электродвигателя

        Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

        Электрический вал и его применение в электроприводе станков

        ,

        • где M – вращающий момент, Нм,
        • F – сила, Н,
        • r – радиус-вектор, м

        Электрический вал и его применение в электроприводе станков

        ,

        • где Pном – номинальная мощность двигателя, Вт,
        • nном — номинальная частота вращения, мин -1 [4]

        Начальный пусковой момент — момент электродвигателя при пуске.

        1 oz = 1/16 lb = 0,2780139 N (Н)
        1 lb = 4,448222 N (Н)

        момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

        1 oz∙in = 0,007062 Nm (Нм)
        1 lb∙in = 0,112985 Nm (Нм)

        Читайте также: Муфта выходного вала это

        Мощность электродвигателя

        Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

        Механическая мощность

        Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

        Электрический вал и его применение в электроприводе станков

        ,

        • где P – мощность, Вт,
        • A – работа, Дж,
        • t — время, с

        Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы [2].

        Электрический вал и его применение в электроприводе станков

        ,

        Для вращательного движения

        Электрический вал и его применение в электроприводе станков

        ,

        Электрический вал и его применение в электроприводе станков

        • где – угол, рад,

        Электрический вал и его применение в электроприводе станков

        ,

        Электрический вал и его применение в электроприводе станков

        • где – углавая скорость, рад/с,

        Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

        Электрический вал и его применение в электроприводе станков

        Коэффициент полезного действия электродвигателя

        Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

        Электрический вал и его применение в электроприводе станков

        ,

        Электрический вал и его применение в электроприводе станков

        • где – коэффициент полезного действия электродвигателя,
        • P1 — подведенная мощность (электрическая), Вт,
        • P2 — полезная мощность (механическая), Вт
          При этом потери в электродвигатели обусловлены:
        • электрическими потерями — в виде тепла в результате нагрева проводников с током;
        • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
        • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
        • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

        КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

        Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

        Электрический вал и его применение в электроприводе станков

        Частота вращения

        Электрический вал и его применение в электроприводе станков

        • где n — частота вращения электродвигателя, об/мин

        Момент инерции ротора

        Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

        Электрический вал и его применение в электроприводе станков

        ,

        • где J – момент инерции, кг∙м 2 ,
        • m — масса, кг

        1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )

        Момент инерции связан с моментом силы следующим соотношением

        Электрический вал и его применение в электроприводе станков

        ,

        Электрический вал и его применение в электроприводе станков

        • где – угловое ускорение, с -2 [2]

        Электрический вал и его применение в электроприводе станков

        ,

        Номинальное напряжение

        Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики [3].

        Электрическая постоянная времени

        Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

        Электрический вал и его применение в электроприводе станков

        ,

        Электрический вал и его применение в электроприводе станков

        • где – постоянная времени, с

        Механическая характеристика

        Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

        Видео:ЭЛЕКТРОПРИВОД. Учебный фильм.Скачать

        ЭЛЕКТРОПРИВОД. Учебный фильм.

        Сравнение характеристик внешне коммутируемых электрических двигателей

        Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.

        Электрический вал и его применение в электроприводе станков

        Электрический вал и его применение в электроприводе станков

        Электрический вал и его применение в электроприводе станков

        Электрический вал и его применение в электроприводе станков

        Электрический вал и его применение в электроприводе станков

        Электрический вал и его применение в электроприводе станков

        Электрический вал и его применение в электроприводе станков

        В соответствии с выше приведенными показателями гибридный синхронный электродвигатель, а именно синхронный реактивный электродвигатель со встроенными постоянными магнитами, является наиболее подходящим для применения в качестве тягового электродвигателя в автомобилестроении (выбор проводился для концепта автомобилей BMW i3 & BMW i8). Использование реактивного момента обеспечивает высокую мощность в верхнем диапазоне скоростей. Более того такой двигатель обеспечивает очень высокую эффективность (КПД) в широком рабочем диапазоне [7].

        Видео:Самодельный редукторный электропривод малой продольной 1A62(начало модернизации)Скачать

        Самодельный редукторный  электропривод малой продольной 1A62(начало модернизации)

        Области применения электродвигателей

        Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии [6].

        • Свежие записи
          • Чем отличается двухтактный мотор от четырехтактного
          • Сколько масла заливать в редуктор мотоблока
          • Какие моторы бывают у стиральных машин
          • Какие валы отсутствуют в двухвальной кпп
          • Как снять стопорную шайбу с вала


          🔥 Видео

          Жесть! Страшное происшествие на стройке!Скачать

          Жесть! Страшное происшествие на стройке!

          Электромеханический трехвалковый трубогиб (профилегиб) станок ПРОФИ-РВ2. Почему его покупают?Скачать

          Электромеханический трехвалковый трубогиб (профилегиб) станок ПРОФИ-РВ2. Почему его покупают?

          МЕРТВАЯ болгарка поднимает 1200 кг. МОЩНАЯ самоделка ИЗ ХЛАМА.Скачать

          МЕРТВАЯ болгарка поднимает 1200 кг. МОЩНАЯ самоделка ИЗ ХЛАМА.

          Принципы работы кареточного электромотора для велосипеда на примере Bafang. // Clever CricketСкачать

          Принципы работы кареточного электромотора для велосипеда на примере Bafang. // Clever Cricket

          Стенд для правки дисков (SIVIK) Титан Alu Компакт с электроприводом [официальное видео]Скачать

          Стенд для правки дисков (SIVIK) Титан Alu Компакт с электроприводом [официальное видео]

          Как сделать любую шестерёнку для бытовой техники самому, в домашних условияхСкачать

          Как сделать любую шестерёнку для бытовой техники самому, в домашних условиях

          СУПЕР СТАНОК! ОТЛИЧНАЯ ИДЕЯ ИЗ ДВИГАТЕЛЯ ОТ СТИРАЛКИ. Homemade wood lathe.Скачать

          СУПЕР СТАНОК! ОТЛИЧНАЯ ИДЕЯ ИЗ ДВИГАТЕЛЯ ОТ СТИРАЛКИ. Homemade wood lathe.

          Трапецеидальные винты. Чем отличаются и как выбрать?Скачать

          Трапецеидальные винты. Чем отличаются и как выбрать?

          6.2 Кинематический расчет приводаСкачать

          6.2 Кинематический расчет привода
Поделиться или сохранить к себе:
Технарь знаток