Электродвигатель из карданного вала

Электродвигатель из карданного вала

Важный узел транспортного средства — карданный вал. Что это за деталь? Для чего нужна? Где находился? Читайте в нашей публикации.

Видео:МикРоб это микро робот. Он имеет: электродвигатель, мотор, ротор, карданный вал, коробку скоростей↓↓Скачать

МикРоб это микро робот. Он имеет: электродвигатель, мотор, ротор, карданный вал, коробку скоростей↓↓

Что такое карданный вал

Назначение карданного вала – передача крутящего момента. В автомобилях он устанавливается между коробкой передач и редуктором моста. Для заднеприводных моделей монтируется один вал, в полноприводных – два. Такую же конструкцию используют в системе рулевого управления, для подключения внешних блоков к спецтехнике – тракторам, экскаваторам.

Электродвигатель из карданного вала

В каталогах производителей можно увидеть, какие бывают карданы, особенности их конструкции и принцип работы. Но почти для всех моделей сохраняется общий принцип компоновки. Это делает их универсальными, частично взаимозаменяемыми.

Кардан состоит из одной или нескольких секций полой трубы со следующими компонентами:

  • Фланец-вилка. Они соединяют вал с КПП и редуктором.
  • Крестовина. Необходима для сопряжения 2-х труб вала при изменении угла (стандартно до 20°) относительно друг друга.
  • Раздвижное шлицевое соединение (скользящая вилка). Компенсирует изменение расстояния между КПП и редуктором моста, что происходит во время движения.
  • Подвесной подшипник. Крепит конструкцию к кузову автомобиля. Количество равно числу секций кардана.
  • Сальники и обойма сальника. Используются для герметичного примыкания узлов.

Конструкция карданной передачи зависит от условий эксплуатации и нагрузки. У легковых автомобилей вал имеет меньше частей, что повышает надежность работы.

Для спецтехники разрабатывают модели для экстремальных условий – большая механическая нагрузка, минимизация влияния загрязнения.

Видео:Как просверлить вал электродвигателя. Удлиняю вал двигателя от стиралки.Скачать

Как просверлить вал электродвигателя. Удлиняю вал двигателя от стиралки.

Функция карданной передачи

В машине кардан нужен для передачи крутящего момента от КПП или раздаточной коробки к редукторам моста. Сложность заключается в том, что оси вращения коробки и моста находятся в разных плоскостях. Поэтому кардан установлен не четко в горизонтальной плоскости, а под небольшим углом.

При включении передачи и нажатии газа происходит переход крутящего момента на скользящую вилку. Движение передается на крестообразный шарнир и далее поступает к редуктору заднего моста.

Задача конструкторов – минимизировать потери крутящего момента. Так как работает кардан при движении постоянно и необходимо обеспечить надежность его функционирования, были созданы следующие методы компенсации:

  • Составная конструкция из нескольких труб. Обеспечивает надежное соединение КПП и моста, которые расположены в разных плоскостях.
  • Минимальный люфт крестовин и вилок нужен для мягкой передачи крутящего момента, что сказывается на плавности хода.
  • Компенсация подвижности задней оси с помощью скользящей вилки.

В идеале скорость вращения вала коробки передачи должна совпадать с движением ведущей шестерни заднего моста. Однако на практике это зависит от фактического состояния кардана. Необходимо следить за износом шарниров и втулок, опорных подшипников.

Видео:МикРоб имеет: двигатель, мотор, винты, статор, ротор, карданный вал, шарнир, коробку скоростей и ↓↓↓Скачать

МикРоб имеет: двигатель, мотор, винты, статор, ротор, карданный вал, шарнир, коробку скоростей и ↓↓↓

Виды карданных валов

Тип карданной передачи зависит от назначения. Компоновка разрабатывается на стадии проектирования. Выбор, зачем нужен карданный вал конкретной конструкции определяется техническими характеристиками автомобиля. В некоторых случаях необходим монтаж многовального механизма с несколькими шарнирами.

Асинхронные

Асинхронная схема применяется во многих автомобилях с задним или полным приводом. Особенность – в процессе движения формируются неравные угловые скорости. Это происходит из-за соединения двух вилок с помощью крестовины под прямым углом. Второстепенный вал 2 раза отстает и 2 раза обгоняет главный.

Для компенсации устанавливают дополнительные карданные шарниры неравных скоростей. Они монтируются на концах вала. При такой схеме допускается изменение угла между трубами до 20°. Недостаток – из-за усложнения нужно частое обслуживание, ремонт.

Синхронные

Решением проблемы асинхронных моделей стали ШРУСы – шарниры равных угловых скоростей. Они имеют различную конструкцию. На автомобилях Pegout и Renault монтируют «Трипод». В нем передача крутящего момента происходит через 3 сферических ролика. Они скользят в пазах вилки ведомого вала.

Особенность синхронных карданов – возможность работать при углах отклонения до 70°. Происходит снижение вибрации, увеличивается безремонтный срок эксплуатации. Недостатки – есть вероятность повреждения пыльников на бездорожье.

Гибкая и жесткая полукарданная передача

Это одна из разновидностей карданного вала, предназначенная для компенсации угловых поворотов, небольшого изменения расстояния между КПП и задним мостом во время движения. Упругое звено изготавливается из резинотканевого материала или резины. Компенсация изменения угла происходит за счет сжатия или растяжения этого элемента.

Жесткий карданный шарнир устанавливается в автомобилях редко. Причина – низкая степень надежности, повышенный шум во время работы. Конструкция применяется для компенсации дефектов монтажа.

Как проверить состояние карданного вала

Первые признаки появления неисправностей в кардане – шум и повышенная вибрация. Вторичные «симптомы» – протечка масла в месте состыковки вала с КПП, во время переключения передачи возникает стук. Для проверки необходима эстакада или смотровая яма. Нужен свободный доступ ко всем элементам, хорошее освещение.

Какие узлы необходимо проверить:

  • Крепления. Проверка наличия гроверной шайбы и степени ее затянутости на гайке промежуточной опоры и соединения фланцев. Возможный дефект – появление люфта и вибрации.
  • Состояние эластичной муфты. Возможно нарушение целостности, механические повреждения. Они влияют на степень компенсации смещений элементов карданного вала. Проверка – медленное вращение кардана по часовой стрелке и обратно. Должен отсутствовать люфт.
  • Появление зазоров между скользящей вилкой и валом. Причина – износ деталей. Для контроля нужно повернуть вал с муфтой. Если происходят «биения», есть люфт, необходима замена скользящей вилки.
  • Шарниры. Проверку удобно делать с помощью шлицевой отвертки. Она вставляется в проушины вилок. Признак неисправности – при движении есть люфт.
  • Подвесной подшипник. Если во время раскачивания вала наблюдается биение подшипника, это указывает на его замену.

Балансировку кардана рекомендуется делать на стенде. Для этого на вал устанавливают специальные пластины-балансиры. После работы проверяется их состояние. Альтернативный способ – токарная обработка.

Важно: можно попытаться сделать балансировку кардана в домашних условиях. Но это не гарантирует полное устранение дефектов.

Видео:Основы центровки Центровка карданного валаСкачать

Основы центровки  Центровка карданного вала

Демонтаж и установка карданного вала

Определить точное время, когда нужно менять кардан, могут только специалисты. Явные признаки неисправности – значительные механические повреждения, дефекты соединений, деформации. Для демонтажа кардана необходимо поставить машину на эстакаду или над смотровой ямой.

Порядок снятия кардана:

  1. Открутить болты, соединяющие фланцы моста и кардана.
  2. Вал опустится вниз. Нужно заранее подготовить для него опору.
  3. Снять крепления резиновой муфты.
  4. Выдвинуть кардан из КПП.
  5. Демонтировать крепление подвесного подшипника.

После этого можно заняться ремонтом, обслуживанием кардана. Перед установкой нового необходимо проверить работоспособность всех компонентов. Монтаж выполняется в обратном порядке.

Важно своевременно проводить обслуживание и диагностику карданной передачи. Это поможет минимизировать появление поломок, неисправностей.

Если Вы заметили ошибку, неточность или хотите дополнить материал, напишите об этом в комментариях, и мы исправим статью!

Видео:Как правильно установить эластичную муфтуСкачать

Как правильно установить эластичную муфту

Карданный вал гидравлического забойного двигателя

Электродвигатель из карданного вала

Электродвигатель из карданного вала

Электродвигатель из карданного вала

Электродвигатель из карданного вала

Электродвигатель из карданного вала

Электродвигатель из карданного вала

Электродвигатель из карданного вала

Электродвигатель из карданного вала

Владельцы патента RU 2444600:

Изобретение относится к устройствам приводов вращения, размещаемых внутри гидравлического забойного двигателя, в частности для соединения ротора винтового героторного двигателя или турбобура с валом шпинделя, снабженным долотом для бурения нефтяных и газовых скважин. Карданный вал содержит центральный вал и две полумуфты, каждая из которых охватывает край центрального вала, а между каждой полумуфтой и краем центрального вала размещен ряд шариков, установленных одной стороной в полусферических впадинах центрального вала, а другой стороной — в продольных полуцилиндрических пазах полумуфты. Каждый ряд шариков образует между центральным валом и полумуфтой шарнирный механизм для передачи крутящего момента. Центральный вал содержит на каждом краю продольные зубчатые выступы, каждый из которых расположен внутри продольного полуцилиндрического паза полумуфты, максимальная высота каждого продольного зубчатого выступа равна радиусу шарика, а половина полусферической впадины на краю центрального вала и расположенная с противоположной стороны от плоскости симметрии, проходящей через центральную продольную ось центрального вала и центр шарика, половина продольного полуцилиндрического паза полумуфты выполнены каждая с увеличенной на высоту продольного зубчатого выступа глубиной. Боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором, максимальная величина которого равна радиусу шарика. Обеспечивает повышение ресурса и надежности. 3 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к устройствам приводов вращения, размещаемых внутри гидравлического забойного двигателя, в частности для соединения ротора винтового героторного двигателя или турбобура с валом шпинделя, снабженным долотом для бурения нефтяных и газовых скважин.

Известна универсальная муфта для забойного двигателя, содержащая корпус с внутренними прямоугольными шпоночными пазами, размещенный в нем с возможностью кругового отклонения на острый угол вал с установленными на нем шпонками, помещенными в радиальные шпоночные отверстия, вкладыш с опорной поверхностью, установленный в корпусе для взаимодействия с шаром, и узел уплотнения, включающий уплотнительное кольцо с манжетой и гайку (US 4772246, 20.09.1988).

Недостатком известной конструкции является неполная возможность увеличения ресурса и надежности вследствие того, что выполненные в валу сквозные радиальные отверстия для установки шпонок и осевое отверстие для установки шара уменьшают прочность вала, кроме того, являются концентраторами напряжений. В результате указанные места при передаче забойной нагрузки на вал и шарнирные элементы приводных : механизмов нагружены предельными эквивалентными напряжениями, что ограничивает ресурс и надежность известной конструкции.

Другим недостатком известной конструкции является повышенный износ пальцев 84 в отверстиях 54, возможность заклинивания (прихвата) шпонок 88 в пазах 76, а также возможность разрушения резьбовых соединений корпуса 60 и втулки 70 при максимальных углах отклонения шарнирного узла из-за попадания (шламования) твердых частиц бурового раствора в узел уплотнения между втулкой 134 и поверхностью 32 вала 12.

Читайте также: Регулировка первичного вала кпп пежо боксер 3

Известна универсальная муфта для забойного двигателя, содержащая корпус с радиальными отверстиями, установленный в нем с возможностью кругового отклонения на острый угол вал, размещенный между корпусом и валом ряд шариков, установленных одной стороной в полусферических впадинах вала, другой стороной — в радиальных отверстиях корпуса, а также шар, установленный в корпусе для взаимодействия с торцом вала (US 5000723, 19.03.1991).

Недостатком известной конструкции является неполная возможность увеличения ресурса и надежности вследствие того, что края сквозных радиальных отверстий в корпусе для установки шариков, расположенные на минимальном радиальном удалении от продольной оси корпуса, из-за предельных контактных напряжений ограничивают передаваемый крутящий момент, являются концентраторами напряжений для отверстий и шариков, способствуют образованию в шариках усталостных трещин, приводят к увеличению люфтов и разрушению муфты.

Известен карданный вал для соединения ротора винтовой героторной гидромашины с валом шпинделя, содержащий центральный вал и два корпуса, каждый из которых охватывает край центрального вала, а между каждым корпусом и краем центрального вала размещен ряд шариков, установленных одной стороной в полусферических впадинах центрального вала, другой стороной — в продольных полуцилиндрических пазах корпуса, а также содержащий вкладыш с опорной поверхностью, установленный в корпусе для взаимодействия с торцом вала, и узел уплотнения, включающий манжету, уплотнительное кольцо и гайку (US 5267905, 07.12.1993).

Недостатком известного карданного вала является неполное использование возможности повышения ресурса и надежности, например, за счет уменьшения контактных напряжений и износа шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов), повышения равномерности контактных напряжений в шарнирных механизмах.

Известен универсальный шарнир для приводов прокатного стана и подобных устройств, состоящий из корпусного элемента, соединяющегося с одним валом и вращающегося вокруг оси и имеющего аксиально простирающееся отверстие и множество аксиально исходящих канавок, высеченных радиально наружу из указанного отверстия, каждая канавка, имеющая плоскую боковую поверхность и плоскую базовую поверхность в плоскости, перпендикулярной боковой поверхности и параллельно указанной оси корпуса, и спайдер, присоединенный к другому валу и, вращаемый вокруг оси и имеющий приводной механизм, простирающийся в соответствующие канавки, приводной механизм в каждой канавке, имеющий периферийную поверхность, аксиально подвижную и вращающуюся по указанной базовой поверхности канавки, принимающей приводной механизм, и цилиндрически изогнутый вокруг оси, проходящий поперек через указанную ось спайдера, и каждый приводной механизм, включающий выступ, исходящий от спайдера, и опору подшипника с плоской поверхностью, подвижно контактирующей/зацепляющейся с указанной боковой поверхностью канавки, принимающей приводной механизм, и противоположной изогнутой поверхностью, подвижно соединенной соответствующей изогнутой поверхностью выступа, указанные подвижно контактирующие поверхности каждого выступа и опоры подшипника, будучи цилиндрически изогнутыми вокруг оси по касательной к цилиндрической поверхности, которая сцентрирована по указанной оси спайдера и проходит через указанную периферийную поверхность соответствующего приводного механизма (US 2645105, 07.03.1949).

Недостатком известной конструкции является неполная возможность использования ее в устройстве привода вращения, размещаемого внутри забойного двигателя в скважине (с уменьшенными диаметрами корпусных муфт, размещаемых внутри регулятора угла перекоса двигателя), в частности для соединения ротора гидравлического забойного двигателя (винтового героторного гидравлического двигателя или турбобура) с валом шпинделя для бурения наклонных и горизонтальных скважин, вследствие недостаточной надежности и ресурса из-за того, что места перехода краев поз.0 (prongs, вилки, зубца или острой части зубца) охватываемой части корпусной муфты (спайдера), расположенных на минимальном радиальном удалении от продольной оси корпусной муфты, вследствие предельных эквивалентных напряжений ограничивают передаваемый крутящий момент, способствуют образованию усталостных трещин, приводят к увеличению люфтов и разрушению сегментных опор подшипников поз.r (bearing block) в корпусных муфтах.

Недостатком известной конструкции является также недостаточная прочность вала поз.g, а также шпоночного соединения вала поз.g с корпусным элементом поз.b и с цилиндрическим блоком поз.а вследствие предельных эквивалентных напряжений, которые ограничивают передаваемый крутящий момент, способствуют образованию усталостных трещин, приводят к увеличению люфтов и разрушению сегментных опор подшипников поз.r (bearing block) в корпусных муфтах.

Недостатком известной конструкции является также отсутствие элементов для восприятия осевых сжимающих усилий, действующих на торцы вала поз.g, необходимых для восприятия осевых сжимающих усилий, действующих от ротора винтового героторного гидравлического двигателя или турбобура на карданный вал, а также на вал шпинделя, установленный в осевых и радиальных опорах вращения, при бурении наклонных и горизонтальных скважин.

Осевые сжимающие усилия на торцы карданного вала определяются максимальным дифференциальным перепадом давления в героторной винтовой рабочей паре ротор-обкладка из эластомера статора или в роторных ступенях турбобура, умноженным на эффективные площади винтовых зубьев ротора или рабочих лопаток ступеней ротора турбобура.

При этом знакопеременные (вибрационные) забойные осевые нагрузки действуют на карданный вал, преимущественно при больших осевых люфтах (до 5 мм) в осевых опорах вращения вала шпинделя из-за износа осевых опор вращения буровым раствором.

Наиболее близким к заявляемому изобретению является карданный вал для соединения ротора винтовой героторной гидромашины со шпинделем, содержащий центральный вал и два корпуса, каждый из которых охватывает край центрального вала, а между каждым корпусом и краем центрального вала размещен ряд шариков, установленных одной стороной в полусферических впадинах, например, центрального вала, другой стороной — в продольных полуцилиндрических пазах, например, корпуса, при этом каждый ряд шариков образует между центральным валом и корпусом шарнирный механизм, по меньшей мере, один из шарнирных механизмов выполнен двухрядным, например, с суммарным четным числом равнорасположенных по окружности шариков в двух рядах, равным числу шариков однорядного шарнирного механизма, при этом вдоль оси центрального вала шарики двух рядов расположены между собой на определенном расстоянии, максимальная величина которого равна эксцентриситету ротора относительно статора винтовой героторной гидромашины (RU 2285781, 20.10.2006).

Недостатком известного карданного вала является неполное использование возможности увеличения ресурса и надежности, например, за счет образования дополнительного зубчатого зацепления, обеспечивающего передачу крутящего момента при износе шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов), а также за счет уменьшения контактных напряжений и износа шарнирных пар, повышения равномерности контактных напряжений в шарнирных механизмах.

Техническая задача, на решение которой направлено заявляемое изобретение, — повышение ресурса и надежности карданного вала путем образования дополнительного зубчатого зацепления, обеспечивающего передачу крутящего момента при износе шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов) за счет того, что центральный вал содержит на каждом краю продольные зубчатые выступы, каждый из которых расположен внутри продольного полуцилиндрического паза полумуфты, максимальная высота каждого продольного зубчатого выступа равна радиусу шарика, при этом боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором, максимальная величина которого равна радиусу шарика.

Другая техническая задача, на решение которой направлено заявляемое изобретение, — повышение ресурса карданного вала путем уменьшения контактных напряжений и износа шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов) за счет выполнения с асимметричным профилем поперечного сечения полусферических впадин центрального вала и продольных полуцилиндрических пазов полумуфт, по существу, за счет того, что половина полусферической впадины на краю центрального вала и расположенная со смежной стороны от плоскости симметрии, проходящей через центральную продольную ось центрального вала и центр шарика, половина продольного полуцилиндрического паза полумуфты выполнены каждая с увеличенной на высоту продольного зубчатого выступа глубиной.

Сущность технического решения заключается в том, что в карданном валу гидравлического забойного двигателя, содержащем центральный вал и две полумуфты, каждая из которых охватывает край центрального вала, а между каждой полумуфтой и краем центрального вала размещен ряд шариков, установленных одной стороной в полусферических впадинах центрального вала, а другой стороной — в продольных полуцилиндрических пазах полумуфты, при этом каждый ряд шариков образует между центральным валом и полумуфтой шарнирный механизм для передачи крутящего момента, согласно изобретению центральный вал содержит на каждом краю продольные зубчатые выступы, каждый из которых расположен внутри продольного полуцилиндрического паза полумуфты, максимальная высота каждого продольного зубчатого выступа равна радиусу шарика, а половина полусферической впадины на краю центрального вала и расположенная с противоположной стороны от плоскости симметрии, проходящей через центральную продольную ось центрального вала и центр шарика, половина продольного полуцилиндрического паза полумуфты выполнены каждая с увеличенной на высоту продольного зубчатого выступа глубиной, при этом боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором, максимальная величина которого равна радиусу шарика.

Высота h каждого продольного зубчатого выступа на краю центрального вала с радиусом R шарика связана соотношением: h=(0,505÷0,905)R.

Читайте также: Как подкачать велосипед колесо используя автомобильный компрессор

Боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором J, который с радиусом R шарика связан соотношением: J=(0,505÷0,905)R.

Боковая поверхность каждого продольного зубчатого выступа на краю центрального вала, направленная к стенке продольного полуцилиндрического паза полумуфты, выполнена в форме части круга с радиусом, равным радиусу шарика.

Выполнение карданного вала гидравлического забойного двигателя таким образом, что центральный вал содержит на каждом краю продольные зубчатые выступы, каждый из которых расположен внутри продольного полуцилиндрического паза полумуфты, максимальная высота каждого продольного зубчатого выступа равна радиусу шарика, а половина полусферической впадины на краю центрального вала и расположенная с противоположной стороны от плоскости симметрии, проходящей через центральную продольную ось центрального вала и центр шарика, половина продольного полуцилиндрического паза полумуфты выполнены каждая с увеличенной на высоту продольного зубчатого выступа глубиной, при этом боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором, максимальная величина которого равна радиусу шарика, обеспечивает повышение ресурса и надежности за счет образования дополнительного зубчатого зацепления, обеспечивающего передачу крутящего момента при износе шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов), а также за счет уменьшения контактных напряжений и износа шарнирных пар, повышения равномерности контактных напряжений в шарнирных механизмах.

Выполнение карданного вала гидравлического забойного двигателя таким образом, что высота h каждого продольного зубчатого выступа на краю центрального вала с радиусом R шарика связана соотношением: h=(0,505÷0,905)R, обеспечивает передачу заданного крутящего момента от ротора двигателя на вал шпинделя при помощи дополнительного механизма зубчатого зацепления при износе шарнирных пар с ресурсом, по меньшей мере, равным ресурсу шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов) между центральным валом и полумуфтами, что повышает надежность карданного вала и обеспечивает экономические преимущества при бурении изогнутых скважин винтовым героторным двигателем, снабженным регулятором угла перекоса.

Выполнение карданного вала таким образом, что боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором J, который с радиусом R шарика связан соотношением: J=(0,505÷0,905)R, обеспечивает передачу крутящего момента при износе шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов) при помощи механизма зубчатого зацепления, увеличивает ресурс и надежность за счет равных по прочности на изгиб и смятие элементов шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов) и элементов зубчатого зацепления: боковой поверхности каждого продольного зубчатого выступа на краю центрального вала и направленной к ней стенки продольного полуцилиндрического паза полу муфты.

Выполнение карданного вала таким образом, что боковая поверхность каждого продольного зубчатого выступа на краю центрального вала, направленная к стенке продольного полуцилиндрического паза полумуфты, выполнена в форме части круга с радиусом, равным радиусу шарика, обеспечивает совместную работу изношенных шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов), а также рабочих поверхностей дополнительного зубчатого зацепления без дополнительной контактной «приработки», что также увеличивает ресурс за счет равных по прочности на изгиб и смятие элементов шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов) и элементов дополнительного зубчатого зацепления: боковой поверхности каждого продольного зубчатого выступа на краю центрального вала и направленной к ней стенки продольного полуцилиндрического паза полумуфты.

Материалы деталей конструкции: сталь 40ХН2МА — центральный вал и полумуфты; сталь 95Х18 — шарики.

Свойства материалов приведены в таблице 1.

Таблица 1
Свойства материалов
Наименование параметраМатериал:
Сталь 40ХН2МАСталь 95Х18
Модуль упругости, кг/мм 22150020400
Коэффициент Пуассона0,30,3
Предел текучести σ0,2, кг/мм 293,0170,0
Предел прочности σв, кг/мм 2108,0230,0

Расчет напряженно-деформированного состояния конструкции карданного вала, который осуществлялся методом конечных элементов с помощью сертифицированного аналитического программного продукта ANSYS 12.1 в статической нелинейной постановке с использованием элементов, имитирующих контактное взаимодействие, с учетом упругопластичных свойств материалов конструкции показал, что в случае равномерного распределения нагрузки между продольными зубчатыми выступами центрального вала и продольными полуцилиндрическими пазами полумуфт значение наибольшего эквивалентного (по Мизесу) напряжения в зоне изгиба и смятия продольных зубчатых выступов центрального вала и в зоне основания (наибольшего радиального удаления) продольных полуцилиндрических пазов полумуфт равно σэкв=80,7 кг/мм 2 , в зоне основания продольных зубчатых выступов центрального вала и в зоне основания продольных полуцилиндрических пазов полумуфт запас по пределу текучести составляет 1,17, при этом значение наибольшего эквивалентного (по Мизесу) напряжения в зоне основания продольных зубчатых выступов центрального вала и в зоне основания продольных полуцилиндрических пазов полумуфт составляет σэкв=87,5 кг/мм 2 , запас по пределу прочности составляет 1,25.

Выполнение карданного вала гидравлического забойного двигателя таким образом, что центральный вал содержит на каждом краю продольные зубчатые выступы, каждый из которых расположен внутри продольного полуцилиндрического паза полумуфты, максимальная высота каждого продольного зубчатого выступа равна радиусу шарика, а половина полусферической впадины на краю центрального вала и расположенная с противоположной стороны от плоскости симметрии, проходящей через центральную продольную ось центрального вала и центр шарика, половина продольного полуцилиндрического паза полумуфты выполнены каждая с увеличенной на высоту продольного зубчатого выступа глубиной, при этом боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором, максимальная величина которого равна радиусу шарика, уменьшает концентраторы напряжений, обеспечивает равномерное распределение нагрузки между продольными зубчатыми выступами центрального вала и продольными полуцилиндрическими пазами полумуфт, снижает значение наибольшего эквивалентного (по Мизесу) напряжения.

Ниже представлен карданный вал для соединения ротора винтового героторного гидравлического двигателя ДРУ2-120РС с валом шпинделя.

На фиг.1 изображен карданный вал для соединения ротора винтового героторного гидравлического двигателя с валом шпинделя.

На фиг.2 изображен элемент I на фиг.1 полумуфты для соединения с ротором винтового героторного гидравлического двигателя.

На фиг.3 изображен элемент II на фиг.1 полумуфты для соединения с валом шпинделя.

На фиг.4 изображен разрез А-А на фиг.2 поперек продольных зубчатых выступов и шариков в полусферических впадинах входной части центрального вала.

На фиг.5 изображен разрез Б-Б на фиг.3 поперек продольных зубчатых выступов и шариков в полусферических впадинах выходной части центрального вала.

На фиг.6 изображен разрез В-В на фиг.2 поперек продольных зубчатых выступов входной части центрального вала, контактирующих со стенкой полуцилиндрического паза полумуфты при передаче крутящего момента дополнительным зубчатым зацеплением при полном износе шарнирных пар.

На фиг.7 изображен карданный вал, расположенный внутри регулятора угла перекоса между корпусами винтового героторного гидравлического двигателя и шпинделя, для соединения ротора двигателя с валом шпинделя.

Карданный вал 1 гидравлического забойного двигателя содержит центральный вал 2 и две полумуфты 3 и 4, каждая из которых охватывает край 5 и 6, соответственно, центрального вала 2, между полумуфтой 3 и краем 5 центрального вала 2 размещен ряд шариков 7, между полумуфтой 4 и краем 6 центрального вала 2 размещен ряд шариков 8, установленных одной стороной в полусферических впадинах 9 и 10, соответственно, центрального вала 2, а другой стороной — в продольных полуцилиндрических пазах 11 и 12 полумуфты 3 и 4, соответственно, при этом каждый ряд шариков 7 и 8 образует между центральным валом 2 и полумуфтами 3 и 4, соответственно, шарнирный механизм для передачи крутящего момента, показано на фиг.1, 2, 3, 4, 5.

Центральный вал 2 содержит на краю 5 продольные зубчатые выступы 13, каждый из которых расположен внутри продольного полуцилиндрического паза 11 полумуфты 3, показано на фиг.2, 3, 4, 5.

Центральный вал 2 содержит на другом краю 6 продольные зубчатые выступы 14, каждый из которых расположен внутри продольного полуцилиндрического паза 12 полумуфты 4, показано на фиг.2, 3, 4, 5.

Максимальная высота 15 каждого продольного зубчатого выступа 13 на краю 5 центрального вала 2 равна радиусу 16 шарика 7, а половина 17 полусферической впадины 9 на краю 5 центрального вала 2 и расположенная с противоположной стороны от плоскости 18 симметрии, проходящей через центральную продольную ось 19 центрального вала 2 и центр 20 шарика 7, половина 21 продольного полуцилиндрического паза 11 полумуфты 3 выполнены каждая с увеличенной на высоту 15 продольного зубчатого выступа 13 глубиной 22 и 23, соответственно, показано на фиг.2, 3, 4, 5.

Максимальная высота 24 каждого продольного зубчатого выступа 14 равна радиусу 25 шарика 8, а половина 26 полусферической впадины 10 на другом краю 6 центрального вала 2 и расположенная с противоположной стороны от плоскости 27 симметрии, проходящей через центральную продольную ось 19 центрального вала 2 и центр 28 шарика 8, половина 29 продольного полуцилиндрического паза 12 полумуфты 4 выполнены каждая с увеличенной на высоту 24 продольного зубчатого выступа 14 глубиной 30 и 31, соответственно, показано на фиг.2, 3, 4, 5.

Боковая поверхность 32 каждого продольного зубчатого выступа 13 на краю 5 центрального вала 2 и направленная к ней стенка 33 (половина 21) продольного полуцилиндрического паза 11 полумуфты 3 расположены между собой с определенным окружным боковым зазором 34, максимальная величина которого равна радиусу 16 шарика 7, показано на фиг.4.

Читайте также: Приводные валы автомобиля рейтинг

Боковая поверхность 35 каждого продольного зубчатого выступа 14 на краю 6 центрального вала 2 и направленная к ней стенка 36 (половина 29) продольного полуцилиндрического паза 12 полумуфты 4 расположены между собой с определенным окружным боковым зазором 37, максимальная величина которого равна радиусу 25 шарика 8, показано на фиг.5.

Высота 15, h каждого продольного зубчатого выступа 13 на краю 5 центрального вала 2 с радиусом 16, R шарика 7 связана соотношением: h=(0,505÷0,905)R, показано на фиг.4.

Высота 24, h каждого продольного зубчатого выступа 14 на краю 6 центрального вала 2 с радиусом 25, R шарика 8 связана соотношением: h=(0,505÷0,905)R, показано на фиг.5.

Боковая поверхность 32 каждого продольного зубчатого выступа 13 на краю 5 центрального вала 2 и направленная к ней стенка 33 (половина 21) продольного полуцилиндрического паза 11 полумуфты 3 расположены между собой с определенным окружным боковым зазором 34, J, который с радиусом 16, R шарика 7 связан соотношением: J=(0,505÷0,905)R, показано на фиг.4.

Боковая поверхность 35 каждого продольного зубчатого выступа 14 на краю 6 центрального вала 2 и направленная к ней стенка 36 (половина 29) продольного полуцилиндрического паза 12 полумуфты 4 расположены между собой с определенным окружным боковым зазором 37, J, который с радиусом 25, R шарика 8 связан соотношением: J=(0,505÷0,905)R, показано на фиг.5.

Боковая поверхность 32 каждого продольного зубчатого выступа 13 на краю 5 центрального вала 2 и направленная к ней стенка 33 (половина 21) продольного полуцилиндрического паза 11 полумуфты 3 выполнена в форме части круга с радиусом 38, равным радиусу 16, R шарика 7, показано на фиг.4, 6.

Боковая поверхность 35 каждого продольного зубчатого выступа 14 на краю 6 центрального вала 2 и направленная к ней стенка 36 (половина 29) продольного полуцилиндрического паза 12 полумуфты 4 выполнена в форме части круга с радиусом 39, равным радиусу 25, R шарика 8, показано на фиг.5.

В полумуфте 3, охватывающей край 5 центрального вала 2, установлена упорная разрезная втулка 40 и кожух из эластомера 41, закрепленные гайкой 42, поз.43 — опорная пята, поз.44 — опорный подшипник, показано на фиг.2.

В полумуфте 4, охватывающей другой край 6 центрального вала 2, установлена аналогичная упорная разрезная втулка 40 и кожух из эластомера 41, закрепленные гайкой 42, поз.43 — опорная пята, поз.44 — опорный подшипник, показано на фиг.3.

Кроме, того на фиг.7 изображен карданный вал, расположенный внутри регулятора угла перекоса между корпусами винтового героторного гидравлического двигателя и шпинделя, для соединения ротора двигателя с валом шпинделя, где обозначено:

поз.45 — регулятор угла перекоса между корпусами винтового героторного гидравлического двигателя и шпинделя;

поз.46 — резьба для соединения полумуфты 3 с ротором 47 винтового героторного гидравлического двигателя;

поз.48 — резьба для соединения полумуфты 4 с валом 49 шпинделя винтового героторного гидравлического двигателя;

поз.50 — направление потока бурового раствора внутри корпуса винтового героторного гидравлического двигателя.

При этом на фиг.7 показан угол кругового отклонения α шарнирного механизма полумуфты 3, предназначенной для крепления при помощи резьбы 46 с ротором 47 двигателя, относительно шарнирного механизма полумуфты 4, предназначенной для крепления при помощи резьбы 48 с валом 49 шпинделя.

Карданный вал 1 винтового героторного гидравлического двигателя работает следующим образом. Поток бурового раствора 50 под давлением, например, 10…20 МПа по колонне бурильных труб подается в винтовые (шлюзовые) камеры между зубьями ротора 47 и зубьями обкладки из эластомера, закрепленной внутри трубчатого корпуса, и образует область высокого давления и момент от гидравлических сил, который приводит в планетарно-роторное вращение ротор 47 внутри обкладки из эластомера (на фиг.7 не показан).

Ротор 47 винтового героторного гидравлического двигателя, расположенный в обкладке из эластомера, закрепленной внутри трубчатого корпуса, при работе двигателя совершает планетарное движение — вращение вокруг своей оси и обращение относительно оси обкладки из эластомера с частотой в Zp раз больше частоты вращения ротора двигателя, карданного вала 1 и вала 49 шпинделя, где Zp — число зубьев ротора.

Винтовые камеры между зубьями ротора 47 и зубьями обкладки из эластомера имеют переменный объем и периодически перемещаются по потоку 50 бурового раствора (на фиг.7 не показан), при этом передача крутящего момента от винтового ротора 47 двигателя через резьбу 46 на полумуфту 3 происходит в окружном направлении, противоположном планетарному вращению ротора 47 винтового героторного гидравлического двигателя.

Передача крутящего момента от ротора 47 винтового героторного гидравлического двигателя через карданный вал 1 на вал 49 шпинделя происходит также при круговом отклонении на угол кругового отклонения α полумуфты 3, предназначенной для крепления при помощи резьбы 46 с ротором 47 двигателя, относительно края полумуфты 4, предназначенной для крепления при помощи резьбы 48 с валом 49 шпинделя.

Выполнение карданного вала 1 таким образом, что центральный вал 2 содержит на краю 5 продольные зубчатые выступы 13, каждый из которых расположен внутри продольного полуцилиндрического паза 11 полумуфты 3, содержит на другом краю 6 продольные зубчатые выступы 14, каждый из которых расположен внутри продольного полуцилиндрического паза 12 полумуфты 4, при этом максимальная высота 15 каждого продольного зубчатого выступа 13 на краю 5 центрального вала 2 равна радиусу 16 шарика 7, а половина 17 полусферической впадины 9 на краю 5 центрального вала 2 и расположенная с противоположной стороны от плоскости 18 симметрии, проходящей через центральную продольную ось 19 центрального вала 2 и центр 20 шарика 7, половина 21 продольного полуцилиндрического паза 11 полумуфты 3 выполнены каждая с увеличенной на высоту 15 продольного зубчатого выступа 13 глубиной 22 и 23, при этом максимальная высота 24 каждого продольного зубчатого выступа 14 равна радиусу 25 шарика 8, половина 26 полусферической впадины 10 на другом краю 6 центрального вала 2 и расположенная с противоположной стороны от плоскости 27 симметрии, проходящей через центральную продольную ось 19 центрального вала 2 и центр 28 шарика 8, половина 29 продольного полуцилиндрического паза 12 полумуфты 4 выполнены каждая с увеличенной на высоту 24 продольного зубчатого выступа 14 глубиной 30 и 31, при этом боковая поверхность 32 каждого продольного зубчатого выступа 13 на краю 5 центрального вала 2 и направленная к ней стенка 33 (половина 21) продольного полуцилиндрического паза 11 полумуфты 3 расположены между собой с определенным окружным боковым зазором 34, максимальная величина которого равна радиусу 16 шарика 7, а боковая поверхность 35 каждого продольного зубчатого выступа 14 на краю 6 центрального вала 2 и направленная к ней стенка 36 (половина 29) продольного полуцилиндрического паза 12 полумуфты 4 расположены между собой с определенным окружным боковым зазором 37, максимальная величина которого равна радиусу 25 шарика 8, повышает ресурс и надежность за счет образования дополнительного зубчатого зацепления, обеспечивающего передачу крутящего момента при износе шарнирных пар (шариков, полусферических впадин и полуцилиндрических пазов), а также за счет уменьшения контактных напряжений и износа шарнирных пар, повышения равномерности контактных напряжений в шарнирных механизмах.

1. Карданный вал гидравлического забойного двигателя, содержащий центральный вал и две полумуфты, каждая из которых охватывает край центрального вала, а между каждой полумуфтой и краем центрального вала размещен ряд шариков, установленных одной стороной в полусферических впадинах центрального вала, а другой стороной — в продольных полуцилиндрических пазах полумуфты, при этом каждый ряд шариков образует между центральным валом и полумуфтой шарнирный механизм для передачи крутящего момента, отличающийся тем, что центральный вал содержит на каждом краю продольные зубчатые выступы, каждый из которых расположен внутри продольного полуцилиндрического паза полумуфты, максимальная высота каждого продольного зубчатого выступа равна радиусу шарика, а половина полусферической впадины на краю центрального вала и расположенная с противоположной стороны от плоскости симметрии, проходящей через центральную продольную ось центрального вала и центр шарика, половина продольного полуцилиндрического паза полумуфты выполнены каждые с увеличенной на высоту продольного зубчатого выступа глубиной, при этом боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором, максимальная величина которого равна радиусу шарика.

2. Карданный вал гидравлического забойного двигателя по п.1, отличающийся тем, что высота h каждого продольного зубчатого выступа на краю центрального вала с радиусом R шарика связана соотношением: h=(0,505÷0,905)R.

3. Карданный вал гидравлического забойного двигателя по п.1, отличающийся тем, что боковая поверхность каждого продольного зубчатого выступа на краю центрального вала и направленная к ней стенка продольного полуцилиндрического паза полумуфты расположены между собой с определенным окружным боковым зазором J, который с радиусом R шарика связан соотношением: J=(0,505÷0,905)R.

4. Карданный вал гидравлического забойного двигателя по п.1, отличающийся тем, что боковая поверхность каждого продольного зубчатого выступа на краю центрального вала, направленная к стенке продольного полуцилиндрического паза полумуфты, выполнена в форме части круга с радиусом, равным радиусу шарика.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📽️ Видео

    Работа карданного вала. Work propeller shaft.Скачать

    Работа карданного вала. Work propeller shaft.

    Как насадить ролик на вал двигателя.Скачать

    Как насадить ролик на вал двигателя.

    Как я делаю карданный вал 3UZ FEСкачать

    Как я делаю карданный вал 3UZ FE

    UAZOBAZA # 187 Сверхточные и сверхпрочные карданные валы для УАЗов от Ваксойл-СервисСкачать

    UAZOBAZA # 187 Сверхточные и сверхпрочные карданные валы для УАЗов от Ваксойл-Сервис

    Проект international 9800 Переоборудование карданного вала топливной двигателя wd 615Скачать

    Проект international 9800 Переоборудование карданного вала топливной двигателя wd 615

    Разборка советского электродвигателя. Ускоренная версия.Скачать

    Разборка советского электродвигателя. Ускоренная версия.

    КАРДАННЫЙ ВАЛ.ЧТОБ НЕ БЫЛО ВИБРАЦИИ!!!Скачать

    КАРДАННЫЙ ВАЛ.ЧТОБ НЕ БЫЛО ВИБРАЦИИ!!!

    Ремонт карданного вала с завальцованными крестовинами.Скачать

    Ремонт карданного вала с завальцованными крестовинами.

    ШЕСТЕРНИ И КАРДАННЫЙ ВАЛ В SCRAP MECHANIC! НЕВОЗМОЖНЫЕ РАНЕЕ МЕХАНИЧЕСКИЕ ЭЛЕМЕНТЫСкачать

    ШЕСТЕРНИ И КАРДАННЫЙ ВАЛ В SCRAP MECHANIC! НЕВОЗМОЖНЫЕ РАНЕЕ МЕХАНИЧЕСКИЕ ЭЛЕМЕНТЫ

    Свап 3uz fe на Газель бизнес часть 11 расчёт карданный валСкачать

    Свап 3uz fe на Газель бизнес часть 11 расчёт карданный вал

    Как крепить цангу на вал электродвигателяСкачать

    Как крепить цангу на вал электродвигателя

    ВИБРАЦИЯ КАРДАННОГО ВАЛА.ЕЩЕ ОДНА ПРИЧИНА ВОЗНИКНОВЕНИЯ.Скачать

    ВИБРАЦИЯ КАРДАННОГО ВАЛА.ЕЩЕ ОДНА ПРИЧИНА ВОЗНИКНОВЕНИЯ.

    КАК РОВНО СВАРИТЬ КАРДАНСкачать

    КАК РОВНО СВАРИТЬ КАРДАН

    Ось двигателя РД 09 и вала не совпадают, муфтаСкачать

    Ось двигателя РД 09 и вала не совпадают, муфта

    Электродвигатель для компрессора асинхронный однофазный 3 кВт YL100L 2Скачать

    Электродвигатель для компрессора асинхронный однофазный 3 кВт YL100L 2
Поделиться или сохранить к себе:
Технарь знаток