Электродвигатели для редукторов таблица

Правильный расчет редуктора перед покупкой крайне важен, поскольку от него напрямую зависит срок службы как самого устройства, так и связанных с ним агрегатов. В противном случае существует большой риск их преждевременного износа из-за перегрузки или вероятность поломки. Именно поэтому при подборе следует учитывать:

  • тип;
  • мощность;
  • максимальный момент на выходном валу;
  • частоту оборотов;
  • передаточные числа;
  • КПД;
  • ремонтопригодность;
  • варианты исполнения в плане взрывозащищенности и взрывобезопасности.

Видео:Краткий обзор мотор редукторов для любых проектов.Скачать

Краткий обзор мотор редукторов для любых проектов.

Тип редуктора

На основе конструктивных особенностей различают: одноступенчатый и двухступенчатый червячный, горизонтально-цилиндрический, соосный цилиндрический и коническо-цилиндрический редуктор. В первых двух типах оба вала (входной и выходной) располагаются под углом 90° друг к другу (для моделей с двумя ступенями возможно и параллельное расположение), что позволяет монтировать их в любых пространственных положениях. Устройства на основе зубчатых колес в силу особенностей компоновки и принципов действия чаще всего устанавливаются горизонтально – следует учитывать это при их выборе. По сравнению с червячными приводами они обладают более высоким КПД (из-за меньших потерь мощности при зацеплении зубчатых колес) и выходным моментом (при равных габаритах и массе).

Видео:видео подбор мотор- редуктораСкачать

видео подбор мотор- редуктора

Передаточное число [I]

Одна из важнейших величин при расчете редуктора, представляющая собой отношение частоты вращения входного вала (N1) к частоте вращения выходного (N2), и определяющаяся по формуле I = N1/N2.

Следует помнить, что первая величина напрямую зависит от номинальных оборотов электромотора и никогда не должна превышать 1500 об./мин. Исключением являются лишь соосные цилиндрические редукторы, рассчитанные на частоту вращения на входе до 3000 об./мин.

Видео:Червячные редукторы. Применения червячных редукторов и как правильно их подобратьСкачать

Червячные редукторы. Применения червячных редукторов и как правильно их подобрать

Крутящий момент редуктора

При расчете редуктора важно учитывать, что необходимый момент вращения (Мс2) не соответствует напрямую моменту на выходном валу, а рассчитывается по формуле:

  • Mc2 – расчетный момент;
  • Mr2 – необходимый момент, не превышающий номинального;
  • Sf – сервис-фактор;
  • Mn2 – номинальный момент.

Максимальный момент вращения является предельной нагрузкой на редуктор и недопустим при постоянной работе.

Видео:Мотор редуктор 12 вольтСкачать

Мотор редуктор 12 вольт

Эксплуатационный коэффициент (сервис-фактор)

Его величина рассчитывается экспериментальным путем и подразумевает испытание устройства продолжительностью работы, нагрузками разной величины и количеством стартов и остановок в течение часа. Для его определения под конкретные условия эксплуатации вы можете воспользоваться помощью наших специалистов.

Видео:Мотор-редуктор червячный NMRV 40Скачать

Мотор-редуктор червячный NMRV 40

Мощность привода

Она позволяет преодолевать возникающую при передаче движения силу трения. Ее величина определяется отношением момента вращения (M) к частоте оборотов (N) и рассчитывается согласно формуле: P = (MxN)/9550.

Мощность на выходном валу (P2) вычисляется как P2 = P x Sf, где последняя величина – сервис-фактор. Обязательно следует помнить, что из-за потерь, возникающих в результате трения при зацеплении зубчатых колес, выходная мощность должна всегда быть ниже входной.

Видео:Мотор-редукторы NMRV: обзор моделейСкачать

Мотор-редукторы NMRV: обзор моделей

Коэффициент полезного действия (КПД)

При расчете редуктора КПД определяется как отношение мощности на выходном валу к мощности, подаваемой на входной. Он измеряется в процентах и вычисляется по следующей формуле: n = (P2/P1) x 100. В устройствах, работающих по принципу червячной передачи, величина Р2 всегда будет заметно ниже, чем Р1, поскольку часть мощности расходуется при зацеплении пары во время передачи вращения.

На итоговый размер коэффициента полезного действия влияют такие факторы, как передаточное число (чем оно выше, тем КПД ниже), длительность эксплуатации (обуславливающая износ элементов агрегата), тип и состав смазочных материалов, а также частота их замены (поскольку от них в широких пределах зависит изменение коэффициента трения).

Видео:Тест ардуино мотор-редукторовСкачать

Тест ардуино мотор-редукторов

Типы взрывозащищенного исполнения

Выделяют 3 основные категории редукторов и мотор-редукторов по классу взрывозащищенности:

  • Е – устройства с повышенной степенью защищенности. Пригодны для эксплуатации в любых условиях, в том числе при возникновении внештатных ситуаций. Благодаря высокой герметичности корпуса подходят для использования в средах взрывоопасных и горючих газов и газо-воздушных смесей без риска воспламенения последних;
  • D – мотор-редукторы со взрывонепроницаемым корпусом, неразрушимым в случае взрыва самого агрегата. Отличаются полной герметичностью оболочки и безопасностью, которая позволяет использовать их в средах любых взрывоопасных газов и смесей, а также при предельно высоких эксплуатационных температурах;
  • I – устройства с увеличенной искробезопасностью. Подразумевают поддержку взрывобезопасного тока в питающей цепи в соответствии с конкретными производственными условиями.

Читайте также: Что означает главная пара в редукторе

Видео:Малогабаритный мотор редуктор 220 вольт с регулятором оборотовСкачать

Малогабаритный  мотор редуктор 220 вольт с регулятором  оборотов

Показатели надежности

Подразумевается срок службы (ресурс) тех или иных частей агрегата при условии продолжительной эксплуатации. Для валов и элементов передачи (зубчатых колес, червячных пар) он составляет:

  • у редукторов планетарного, коническо-цилиндрического, конического и цилиндрического типов – 25 000 часов;
  • у редукторов глобоидного, червячного и волнового типов – 10 000 часов.

Для подшипников, используемых в указанных ниже редукторах, ресурс составляет:

  • коническо-цилиндрических, планетарных, цилиндрически и конических – 12 500 часов;
  • червячных – 5 000 часов;
  • волновых, глобоидных – 10 000 часов.

При расчете редукторов нужно учитывать, что указанные конструктивные элементы должны оставаться в работоспособном состоянии в течение срока, составляющего не менее 90% от приведенных величин. Это относится только к нормальным условиям эксплуатации. При их нарушении (например, несвоевременной замене масла) скорость износа комплектующих резко увеличится, а ресурс сократится.

Наше предприятие «ТехПривод» предлагает широкий выбор редукторов и мотор-редукторов по оптимальным ценам, в любых требуемых объемах и с доставкой во все регионы страны. Чтобы рассчитать мощность, момент и другие требуемые параметры оборудования, свяжитесь со специалистами компании.

Видео:Подключение электродвигателяСкачать

Подключение электродвигателя

Как выбрать мотор-редуктор

В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.

Электродвигатели для редукторов таблица

При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:

  • тип редуктора;
  • мощность;
  • обороты на выходе;
  • передаточное число редуктора;
  • конструкция входного и выходного валов;
  • тип монтажа;
  • дополнительные функции.

Видео:Мотор-редуктор NMRV 040 для ПВКСкачать

Мотор-редуктор NMRV 040 для ПВК

Тип редуктора

Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:

  • Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
  • Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
  • Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
  • Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
  • В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.

Важно! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.

  • Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
  • Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.

Таблица 1. Классификация редукторов по числу ступеней и типу передачи

Видео:Мотор редуктор 48в 500ваттСкачать

Мотор редуктор 48в 500ватт

Редукторы и мотор-редукторы NMRV, NRV, DRV, PCRV, 6Ч, 6МЧ, 7Ч, 7МЧ, 9Ч, 9МЧ

Электродвигатели для редукторов таблица

Электродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблицаЭлектродвигатели для редукторов таблица

Червячные редукторы и мотор-редукторы являются приводом общего назначения предназначены для изменения крутящих моментов и частоты вращения.

За счет своей универсальности нашли широкое применение практически во всех областях производственной индустрии.

Редукторы рассчитаны на длительную работу до 24 ч. в сутки или с периодическими остановками; работу в непрерывном и повторно-кратковременном режимах, при вращении валов в любую сторону, в различных пространственных положения.

Электродвигатели для редукторов таблица

Из-за особенностей конструкции редуктора не является неисправностью повышенный шум и вибрация мотор-редуктора при использовании электродвигателей:

— 3000 об/мин в сочетании с любым передаточным числом редуктора
— 1500 об/мин в сочетании с передаточными числами редуктора менее 15
— с любым числом оборотов однофазных ( с питающим напряжением 220V)

Видео:Двигатель постоянного тока 12В \ 24B DC Motor + червячный редуктор NMRV 030Скачать

Двигатель постоянного тока 12В \\ 24B DC Motor + червячный редуктор NMRV 030

Выбор передаточного числа и оборотов на выходе из редуктора

n1 – количество оборотов на входе в редуктор, об/мин
количество оборотов на входе редуктора в зависимости от выбранного типа привода или электродвигателя.
n2 – количество оборотов на выходе из редуктора, об/мин
Эта величина определяется требуемым количеством оборотов для данного механизма или устройства.
i – передаточное число редуктора.
Величина, полученная от деления количества зубьев червячного колеса на количество заходов червячного вала. Определяется отношением: (формула 1)
i = n1 / n2 (1)

Читайте также: Номинальный крутящий момент редуктора червячного

Видео:планетарный мотор редуктор с алиСкачать

планетарный мотор редуктор с али

Выбор типоразмера редуктора по мощности

P1 – мощность на входном валу, KW
мощность на входе редуктора в зависимости от выбранного типа привода или электродвигателя.
P2 – мощность на выходном валу, KW
мощность на выходе редуктора. Эта величина определяется требуемой мощностью для данного механизма или устройства.
Зависимость мощности на входе в редуктор и на выходе определяется следующим отношением: (формула 2)
ŋds) = (P2 / P1) x 100% (2)
где:
ŋd – динамический коэффициент полезного действия редуктора
Значение КПД вычислены экспериментальным путем для редукторов по результатам длительной обкатки при нормальной скорости вращения и установившейся рабочей температуре корпуса редуктора. Значения приведены в таблице КПД.
ŋs — статический коэффициент полезного действия редуктора.
данный коэффициент возникает при запуске редуктора, значительно снижает крутящий момент. При наличии переменных нагрузок (например, поднятие груза) вместо динамического коэффициента определяющим является статический коэффициент. Значения приведены в таблице КПД.

Передаточное число

P1n – требуемая минимальная мощность электродвигателя, KW
Определяется следующим произведением (формула 3)
P1n ≥ P1 x fs (3)
где:
fs – сервис-фактор. Значение показывающее, насколько большой запас прочности должен иметь редуктор для обеспечения требуемой устойчивости к
перегрузкам. Значение сервис-фактора для каждого исполнения редуктора указано в таблицах технических характеристик.
В зависимости назначения самого привода требуемый сервис-фактор может иметь различные значения для различных условий работы:

Легкий режим работы – нагрузка спокойная безударная, момент инерции ротора электродвигателя больше момента инерции нагрузки, приведённого к быстроходному валу. Это условие почти всегда выполняется, если передаточное отношение редуктора достаточно велико.

К данному типу нагрузки можно отнести следующие механизмы:
Мешалки для чистых жидкостей, загрузочные устройства для печей, тарельчатые питатели, генераторы, центробежные насосы, транспортеры с равномерно распределенной нагрузкой, шнековые или ленточные транспортеры для легких сыпучих материалов,
вентиляторы, сборочные конвейеры, небольшие мешалки, подъемники малой грузоподъемности, подъемные платформы, очистительные машины, фасовочные машины, контрольные машины .

Количество часов работы в день

Количество пусков редуктора в час

Средний режим работы – нагрузка с умеренными ударами, момент инерции нагрузки, приведенный к быстроходному валу, не более чем в три раза
превышает момент инерции ротора двигателя.
К данному типу нагрузки относятся:
Мешалки для вязких жидкостей и твердых материалов, ленточные транспортеры, средние лебедки, канализационные шнеки, волоконные установки, вакуумные фильтры, ковшовые элеваторы, краны, устройства подачи в дерево обрабатывающих станках,
подъемники, балансировочные машины, резьбонарезные станки, ленточные транспортеры для тяжелых материалов, домкраты, раздвижные двери, скребковые конвейеры, упаковочные машины, бетономешалки, фрезерные станки, гибочные станки,
шестеренные насосы, штабелеукладчики, поворотные столы.

Количество часов работы в день

Количество пусков редуктора в час

Читайте также: Передаточное число редукторов меритор

Тяжелый режим работы – нагрузка с сильными ударами – приведённый момент инерции более чем в три раза превышает момент инерции ротора
электродвигателя. Характер нагрузки сказывается, прежде всего, в период пуска/останова привода, поэтому мы рекомендуем использовать устройство плавного
пуска для снижения ударных нагрузок на передачу и, как следствие, повышения надёжности и долговечности привода в целом.
К данному типу нагрузки относятся:
Лебедки и подъемники для тяжелых грузов, экструдеры, резиновые каландры, прессы для кирпича, строгальные станки, шаровые мельницы, мешалки для тяжелых материалов, ножницы, прессы, центрифуги, шлифовальные станки, камнедробилки, цепные
ерпаковые подъемники, сверлильные станки, эксцентриковые прессы, гибочные станки, поворотные столы, барабаны, вибраторы, токарные станки, прокатные станы, мельницы для цемента.

Количество часов работы в день

Количество пусков редуктора в час

Значение требуемого сервис-фактор должно быть увеличено при следующих условиях работы редуктора:

Температура окружающего воздуха

Видео:Сила в сборке 💪 Мотор-редуктор нужного типа и габарита, с нужным фланцем и двигателем 💪Скачать

Сила в сборке 💪 Мотор-редуктор нужного типа и габарита, с нужным фланцем и двигателем 💪

Выбор типоразмера редуктора по крутящему моменту

Если требуется подобрать редуктор по данному крутящему моменту на выходном валу M2(Нхм), определяем требуемый минимальный крутящий момент развиваемый редуктором:
М2n ≥ М2 x fs (4)
где
fs – сервис-фактор (формула 3)
М2n — подбираем ближайшее большее значение из таблиц с техническими характеристиками редукторов.
В случае необходимости связь между крутящим моментом и мощностью на редукторе устанавливает следующая формула:
P2 = ( М2 х n2 ) / ( 9550 х ŋds)) (5)
где
P2 – мощность на выходном валу, KW
n2 – количество оборотов на выходе в редуктора, об/мин
ŋds) — коэффициент полезного действия редуктора
Далее переходим к формуле 2

Видео:Мотор-редуктор: NMRV 075 I=5 электродвигатель 1,5кВт 1400обСкачать

Мотор-редуктор: NMRV 075 I=5  электродвигатель 1,5кВт 1400об

Выбор типоразмера редуктора по радиальной нагрузке

Шестерни, шкивы, установленные на выходной вал, могут создавать радиальные нагрузки, которые необходимо учитывать, чтобы избежать перегрузки и повреждения редуктора
FR – внешняя радиальная нагрузка, Н: (формула 6)
FR = (2000 x M x kr) / d ≤ FR2 (6)
где
M — крутящий момент на выходном валу редуктора, определяется по формуле 4
kr – коэффициент типа нагрузки. Может принимать следующие значения:
kr = 1,4 нагрузка от червячного вала
kr = 1,1 нагрузка от шестерни
kr = 1,5-2,5 нагрузка от V- шкива
d – диаметр шестерни, шкива в мм
FR2 — значение допустимой радиальной нагрузки, указанное в технических характеристиках на редуктор. При сравнении со значением FR необходимо учитывать, что нагрузка FR2 приложена к центру вала.

Видео:Мотор-редуктор постоянного тока 24В. Испытания.Скачать

Мотор-редуктор постоянного тока 24В. Испытания.

Выбор типоразмера редуктора по радиальной нагрузке

Помимо радиальной нагрузки на вал редуктора может действовать осевая нагрузка
А – внешняя осевая нагрузка, Н (формула 7)
А ≤ FR2 х 0,2 (7)
FR2 — значение допустимой радиальной нагрузки, указанное в технических характеристиках на редуктор.

Видео:Бюджетный мотор редуктор с регуляторомСкачать

Бюджетный мотор редуктор с регулятором

Обратимость червячной передачи

Этот параметр определяет возможность вращения входного вала при приложении определенного момента к выходному валу.
Обратимость червячного редуктора зависит от многочисленных факторов, включая угол подъема винтовой линии, передаточное отношение, смазку, температуру, чистоту обработки поверхности червяка, вибрацию и т.д.
Обратимость червячного редуктора напрямую зависит от КПД (статического или динамического).
Возможность сделать это и усилие, при котором это произойдет, определяет степень обратимости редуктора.
В случае использования редуктора для перемещения грузов высокая обратимость предупреждает инерцию движущихся частей, что позволяет избежать пиковой нагрузки на привод
В случае использования редуктора для подъема грузов высокая необратимость выбирается в случае отсутствия тормоза на валу двигателя. ВНИМАНИЕ: гарантировать от сползания груз может только внешнее тормозное устройство.
В таблице приведена справочная информация по различным степеням обратимости/необратимости редукторов относительно динамической ŋd и статической ŋs эффективности

Динамическая обратимость и необратимость

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    🎦 Видео

    Видео-обзор "Как выбрать мотор редуктор"Скачать

    Видео-обзор "Как выбрать мотор редуктор"

    Мотор - редуктор NMRV - 30Скачать

    Мотор - редуктор NMRV - 30

    Как правильно подобрать мотор-редуктор ОбзорСкачать

    Как правильно подобрать мотор-редуктор  Обзор
Поделиться или сохранить к себе:
Технарь знаток