1. Составляется расчетная схема, где вал рассматривается как балка, лежащая на шарнирных опорах, расстояния между опорами и силами берутся из компоновки редуктора.
2. Определяется величина и направление сил и моментов, действующих на вал (из соответствующих расчетов зубчатых, червячных, ременных или цепных передач).
3. Усилия, изгибающие вал, раскладываются на горизонтальные и вертикальные составляющие, с вычерчиванием расчетных схем для каждой плоскости (рис. 2).
4. Определяются реакции в опорах методами сопротивления материалов и строятся эпюры изгибающих моментов в каждой из двух взаимно перпендикулярных плоскостей.
5. Изгибающие моменты, полученные для каждой из этих плоскостей, складываются геометрически по формуле:
где Мu – результирующий изгибающий момент, Н×м;
Мu в , Мu г – изгибающие моменты в горизонтальной и вертикальной плоскостях, Н×м.
6. Строится эпюра результирующих моментов Мu.
Рис. 4. Схема нагрузок ведущего вала косозубого цилиндрического редуктора
7. Строится эпюра крутящих моментов Т.
8. По характеру эпюр определяются места опасных сечений (наибольшие значения моментов). Для этих мест вычисляют приведенные (эквивалентные) моменты (по теории наибольших касательных напряжений):
Для опасного сечения вала определяется диаметр
где [s] – допускаемое напряжение при основном расчете валов для сталей 35, 40, 45 равно 50…60 Н/мм 2 .
Полученное значение диаметра вала округляется по ГОСТу 6636-69 в меньшую сторону (смотрим предварительный расчёт валов).
Проверочный расчёт валов
Проверочный (уточненный) расчет вала производят в опасных сечениях, где действует максимальный изгибающий момент или имеются концентраторы напряжений (шпоночные канавки, галтели отверстия и т.д.). Расчет обычно производят в форме проверки коэффициента запаса прочности. С точки зрения обеспечения прочности вала, достаточно иметь коэффициент запаса прочности S порядка 1,7. Общий коэффициент запаса прочности определяют из выражения:
где Ss – коэффициент запаса прочности по нормальным напряжениям;
Sτ – коэффициент запаса прочности по касательным напряжениям (определяется по формуле).
где s-1 – предел выносливости материала вала при симметричном цикле изгиба (определяется по формуле для углеродистой стали, МПа);
– предел прочности sb (определяется по таблице 34).
Кs – эффективный коэффициент концентрации нормальных напряжений для шпоночной канавки, – для галтелей и вытачек;
– масштабный фактор (принимается из таблицы 35);
b – коэффициент упрочнения, вводный для валов с поверхностным упрочнением: полированная поверхность b=1, шлифованная поверхность b=0,95…0,97, поверхность чисто обработанная резцом b=0,88…0,92;
Читайте также: Редуктор давления far или valtec
– амплитуда цикла нормальных напряжений.
Видео:9.1 Расчет валов приводаСкачать
sm – среднее значение цикла нормальных напряжений;
Если вал не испытывает осевой нагрузки (если ее действием пренебрегают), можно считать, что цикл изменения нормальных напряжений симметричный и sm=0.
ys – коэффициент, характеризующий чувствительность материала к асимметрии напряжений для среднеуглеродистых сталей, ys=0,05.
Можно считать, что нормальное напряжение изгиба в рассчитываемом сечении.
Таблица 34 — Механические свойства стали, применяемой для
Изготовления валов
Марка стали | Диаметр заготовки, мм | Термообработка |
до 100 | Нормализация | |
100-300 | ||
300-500 | ||
до 100 | Нормализация | |
100-300 | ||
300-500 | ||
до 100 | Нормализация | |
100-300 | ||
300-500 | ||
до 90 | Улучшение | |
90-120 | ||
130-150 |
Таблица 35 – Значения коэффициента ξ
Вид деформации и материала | Диаметр вала | |||||||
При изгибе для углеродистой стали | 0,95 | 0,92 | 0,88 | 0,85 | 0,81 | 0,76 | 0,70 | 0,61 |
При изгибе для высокопрочной легированной стали и при кручении для всех сталей | 0,87 | 0,83 | 0,77 | 0,73 | 0,70 | 0,65 | 0,59 | 0,52 |
где t-1 – предел выносливости материала вала при симметричном цикле кручения t-1=0,58×s-1, МПа;
Кt – эффективный коэффициент концентрации напряжений при кручении для шпоночной канавки Кt=1,4…2,1 при sb=500…1000 Н/мм 2 .
Поскольку крутящий момент, передаваемый валом, в большинстве случаев колеблется по величине, исходя из наиболее благоприятного случая знакопостоянного цикла, принимаем, что напряжение кручения изменяется по пульсирующему циклу, тогда
где WR – момент сопротивления при кручении нетто, мм 3 .
Для вала со шпоночным пазом , мм 3 (168)
yt=0 – для среднеуглеродистых сталей.
Для вала-червяка , мм 3 (169)
где df1 – диаметр впадин червяка, мм.
После определения общего коэффициента запаса прочности его сравнивают с допускаемым значением, [S]=1,7…2,5.
Расчет вала на жёсткость
Производится методами курса сопротивления материалов, если это требуется. Определяются прогиб вала, угол закручивания и сравниваются с допускаемыми значениями. Допустимые значения прогибов: максимальный [f]≤10 -4 ·l, под шестернёй и колесом цилиндрической передачи [f]≤0,03m, под шестернёй и колесом конической передачи [f]≤0,05m,
где l – расстояние между опорами;
Допустимые значения углов поворота: под шестернёй или колесом [Ө]≤0,057 0 , в радиальном шарикоподшипнике [Ө]≤0,57 0 , в радиально-упорном [Ө]≤0,1 0 .
Расчет валов редуктора
7.1. Изображение основных элементов редуктора в диметрии.
Рис. Силы, действующие на валы.
Таблица. Данные для расчета валов.
Сила действ. на вал, Fв, Н | Угол наклона гибкой передачи, β° | Составляющие силы Fв, Н | Ft, Н | Fг,Н | Fа,Н | dш/2, м | dк/2, м | a, м | b, м | c, м | d, м | е, м | Моменты на валах, Н·м |
Fв г , Н | Fв в , Н | Тш | Тк | ||||||||||
803,5 | 55° | Fв сos55° | Fв sin55° | 0,025 | 0,1 | 0,07 | 0,056 | 0,056 | 0,059 | 0,059 | 57,1 |
Читайте также: Набор для замены масла в редукторе лодочного мотора
7.3.1. Определение сил реакций в опорах, построение эпюр изгибающих и крутящих моментов.
Рисунок Силы действующие на вал
Расчетная схема нагружения вала шестерни.
Видео:Прочность и жесткость валов. Часть 6: Эпюры моментов выходного вала (цилиндрическая передача).Скачать
а) Горизонтальная плоскость.
–Fв г ·а + Fг·в – Fа· – Rвх (в+с) = 0
Rвх= Н
— Fв г (а+в+с) + Rах (в+с) – Fа – Fг с = 0
Rах=
Эпюры изгибающих моментов в характерных точках.
Ми2 = Fв г а = 461 0,07 = 32 Н·м
Ми3=Fв г ·(а+в) – Rах·в = 461 0,126 – 1330,76 · 0,056 = 58,1 – 74,52 = –16,42 Н·м
Ми3 (справа) = Rвх · с = 3,79 · 0,056 = 0,21 Н·м
Скачок: 16,42 + 0,21 = 16,63 Н· м
Fа · = 666 · 0,025 = 16,65 Н·м
Rву= = = 1553,2 Н
Rау=
658 +1553,2 +72,7 – 2284 = 0 2283,9 – 2284 = 0
Эпюры Ми в характерных точках
Видео:БАЛКА - 90 СТУДЕНТОВ САМОСТОЯТЕЛЬНО СТРОЯТ ЭПЮРЫ после просмотра этого видео!Скачать
Ми2=Fв в · а = 658 0,07 = 46,06Н·м
Ми3=Fв в · (а+в) + Rау · в = 658 0,126 + 72,7 · 0,056 = 82,9 +4,07 = 86,97 Н·м
Ми3 (справа) =Rву · с = 1553 · 0,056 = 86,98 Н·м Ми4 = 0
Суммарный изгибающий момент
МиΣ = ; МиΣ1 = 0
МиΣ2 = = 56,1 Н·м
МиΣ3 = = 88,5 Н·м
Момент эквивалентный в характерных точках
Мэкв = Мкр = Т2 = 57,1 Н м
Мэкв 1 = = 57,1 Н м
Мэкв 2 = = 80,0 Н·м
Мэкв 3 = = 105,3 Н м
Мэкв 4 = Н·м
7.3.2. Требуемый диаметр вала в наиболее нагруженном сочетании
dв =
dвш = = = 10 2,59 = 26 мм
7.4.1. Определение сил реакций в опорах, построение эпюр изгибающих и крутящих моментов.
Видео:Построение эпюр в балке ( Q и M ). СопроматСкачать
Расчетная схема нагружения колеса
а) Горизонтальная плоскость
; – Fг· d – Fа · + Rвх· (d+е) = 0
Rвх= Н
; – Rах· (d+е) + Fг · с – Fа · = 0
Rах=
Проверка. Rах + Rвх Fг = 0; –131,4 +997,46 – 866 = 0; 997,46 = 997,4
Ми2 = – Rах· d = – 131,4 0,056= –7,36 Н м
Ми2(справа) = Rвх · е = 997,4 0,059= 58,85 Н м
Читайте также: Устройство метанового редуктора 4 поколения
Скачок: 58,85 + 7,36 = 66,21Н м; Fа · = 666 · 0,1 = 66,6 Н м
; Ft· d – Rву· (d+е) = 0; Rву = Rау
Проверка: – Rау – Rву + Ft = 0; – + 2284 = 0 0 = 0
Эпюры Ми в характерных точках
Ми2= – Rау· d = – 1142 0,059= – 67,38 Н·м
Суммарный изгибающий момент
МиΣ =
МиΣ1 = 0; МиΣ2 = = 89,46 Н·м ; МиΣ3 = Н м
Момент эквивалентный в характерных точках
Видео:Как построить эпюры изгибающего момента и поперечной силы. СопроматСкачать
Мэкв = ; Мэкв 1 = = 0 Н·м
Мэкв 2 = = 236,57 Н м; Мэкв 3 = Мэкв 4 219 Н м
7.4.2. Требуемый диаметр вала в наиболее нагруженном сечении
dвк = ; ; dвк = = 34 мм
7.5. Определение размеров ступеней валов редуктора.
d1ш = 22 мм d1к = 36 мм ; d3ш = 32 мм d3к = 48 мм | d2ш = 25 мм d2к = 40 мм |
lст(кол) = (1,2÷1,5)dв = (1,2÷1,5) ·48 = 57,6 ÷72 = 72 мм
dст = (1,6÷1,8) ·48 = 76,8 ÷86,4 = 78 мм ; С = (0,2÷0,3) вк = 6,6 ÷ 9,9 10 мм
Вал зубчатого колеса одноступенчатого редуктора имеет три ступени: 1) выходной конец диаметром d1; 2) участок вала под подшипниками – d2 ; 3) участок вала под зубчатым колесом – d3.
Диаметр выходного конца вала рассчитывают по формуле
d1= , где
Т –крутящий момент передаваемый валом
допускаемые напряжения при кручении ;
d1ш = = 22,5 мм ; d1к = = 35,25 мм
Диаметры выходных концов валов и участков под зубчатыми колесами выбирают из разряда Rа 40; [Чернавский, С.А., с. 161-162]:
10; 10,5; 11; 11,5; 12; 13; 14; 15; 16; 17; 18; 19;20; 21; 22; 24; 25; 28; 30; 32; 34; 36; 38; 40; 42; 45; 48; 50; 52; 55; 60; 63; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125; 130 и далее через 10 мм 33 числа.
Диаметр участков под подшипниками
d2 = d1 + 2t, где t – высота буртика
Таблица. Значение высоты буртика t и фаски подшипника r, мм
d | 17-24 | 25-30 | 32-40 | 42-50 | 52-60 | 62-70 | 71-85 |
t | 2,2 | 2,5 | 2,8 | 3,3 | 3,5 | ||
r | 1,6 | 2,5 | 3,5 | 3,5 |
d2ш = d1ш + 2t = 22 + 2 · 2 = 26 мм
d2к = d1к + 2t = 36 + 2 · 2,5 = 41 мм
d2 округляют до целого числа, оканчивающегося на 0 или 5
Диаметры участков под зубчатыми колесами
d3ш = d2ш + 3,2·2 = 25 + 6,4 = 31,4 мм 32 мм
d3к = d2к + 3,2· 2,5 = 40 + 8 = 48 мм
Видео:Расчет значений Q и M для построения эпюр поперечных сил и изгибающих моментов балки на двух опорахСкачать
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
- Правообладателям
- Политика конфиденциальности
Механика © 2023
Информация, опубликованная на сайте, носит исключительно ознакомительный характер🔥 Видео
Построение эпюр поперечных сил и изгибающих моментов в балке.Скачать
Построение эпюр при изгибе. Часть 1. Консольная балкаСкачать
4. Построение эпюр в раме ( практический курс по сопромату )Скачать
Определение экстремума эпюры моментов MСкачать
Построение эпюр в консольной балкеСкачать
Построение эпюр поперечных сил Qy и изгибающих моментов Mx двухопорной балкиСкачать
Сопромат Плоский изгиб (построение эпюр и подбор сечений) Задача №3.22Скачать
Построение эпюр изгибающих моментов M и поперечных сил Q в балкеСкачать
Рама. Построение эпюр N, Q, M.Скачать
Правило знаков для изгибающих моментовСкачать
РАМА. ПОСТРОЕНИЕ ЭПЮР Q, M, N. Сопромат.Скачать
Построение эпюр поперечных сил и изгибающих моментов.Скачать
Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать
Сопротивление материалов/ Изгиб. Определение опорных реакций, построение эпюр Q и M. (Перезапись)Скачать