На этой странице приведен еще один пример решения задачи по Сопромату, в которой необходимо произвести расчет вала переменного сечения (ступенчатого), нагруженного крутящими моментами. По результатам расчетов необходимо подобрать размеры вала, а также определить максимальную деформацию вала на скручивание (угол закручивания).
Результаты расчетов оформлены эпюрами крутящих моментов, касательных напряжений и углов закручивания бруса.
Студентам технических специальностей ВУЗов в качестве методической помощи предлагаются к скачиванию готовые варианты контрольных работ по сопромату (прикладной механике). Представленные задания и примеры их решения предназначены, в частности, для учащихся Алтайского Государственного технического университета.
Варианты контрольных работ можно скачать в формате Word для ознакомления с порядком решения заданий, или для распечатывания и защиты (при совпадении вариантов).
Видео:РАСТЯЖЕНИЕ-СЖАТИЕ. Построение эпюр. Сопромат.Скачать
Расчет вала
Условие задачи:
К стальному валу, состоящему из 4-х участков длиной l1…l4 приложено четыре сосредоточенных момента М1…М4 (см. рис. 1 ).
Требуется:
Построить эпюру крутящих моментов Мкр , подобрать диаметр вала из расчета на прочность, построить эпюру максимальных касательных напряжений τmax , построить эпюру углов закручивания φ вала и определить наибольший относительный угол закручивания вала.
Исходные данные:
Указания:
Вычертить схему вала в соответствии с исходными данными.
Знаки моментов в исходных данных означают: плюс – момент действует против часовой стрелки относительно оси Z , минус – по часовой стрелке (см. навстречу оси Z ). В дальнейшем значения моментов принимать по абсолютной величине.
Участки нумеровать от опоры.
Допускаемое касательное напряжение [ τ ] для стали принимать равным 100 МПа.
Решение:
1. Определим методом сечений значения крутящих моментов на каждом силовом участке от свободного конца вала.
Крутящий момент равен алгебраической сумме внешних моментов, действующих на вал по одну сторону сечения.
2. Подберем сечение вала из расчета на прочность при кручении по полярному моменту сопротивления для участка, где величина крутящего момента максимальная (без учета знака):
Так как для круглого сечения полярный момент равен: Wр = πD 3 /16 , то можно записать:
D ≥ 3 √ (16Мкр/π[τ]) ≥ 3√(16×12,2×10 3 /3,14×[100×10 6 ]) = 0,0855 м или D ≥ 85,5 мм.
( Здесь и далее знак «√» означает квадратный корень из выражения )
В соответствии со стандартным рядом, предусмотренным ГОСТ 12080-66, принимаем диаметр вала D = 90 мм.
3. Определим угол закручивания для каждого участка вала по формуле:
где
G – модуль упругости 2-го рода; для стали G = 8×10 10 Па;
Ip – полярный момент инерции (для круглого сечения Iр = πD 4 /32 ≈ 0,1D 4 , м 4 ).
Произведение G×Iр = 8×10 10 ×0,1×0,094 ≈ 524880 Н×м 2 – жесткость сечения данного вала при кручении.
Читайте также: Электромагнитная муфта компрессора кондиционера хендай санта фе классик
Расчитываем углы закручивания на каждом участке:
4. Определяем углы закручивания сечений вала, начиная от жесткой заделки (опоры):
5. Определяем максимальное касательное напряжение на каждом силовом участке по формуле:
6. Наибольший относительный угол закручивания Θmax определим по формуле:
7. По результатам расчетов строим эпюры крутящих моментов Мкр , касательных напряжений τmax и углов закручивания φ (см. рис. 2).
Видео:Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать
Пример построения эпюры крутящих моментов при кручении вала
Пусть прямолинейный стержень нагружен внешними сосредоточенными крутящими моментами Mкв1 = -30кН·м, Mкв2=50 кН·м, и распределенным моментом m1=10кН.
Реакции левой опоры можно не определять, т.к. в этом примере можно ограничиться рассмотрением лишь сил, приложенных к правым оставленным частям (справа от сечений).
Для заданного консольного стержня вычисления удобно вести, идя справа налево, начав их с 1–го сечения.
Проведем сечение 1. Определим крутящий момент в текущем сечении:
Проведем сечение 2. Отбросим левую часть, заменим ее действие крутящим моментом M к2 и составим уравнение равновесия в моментах относительно оси бруса. Из уравнения равновесия получаем выражение для крутящего момента в сечении 2:
M к2 = M к1 = M кв2 = 50 кНм
Проведем сечение 3, отбрасываем левую часть, составляем уравнение равновесия и получаем:
M к3 = M кв2 – m 1*4 = 50 – 10*4 = 10 кНм
Аналогично для сечения 4:
Также для сечения 5:
M к5= M к4-M кв1= 10 – 30 = -20 кНм
Для сечения 6:
По полученным значения строим эпюру крутящих моментов (см. рисунок).
Скачок на левом конце эпюры дает величину опорного момента (реактивного момента в заделке) M к6, так как реактивный момент – это внутреннее усилие, действующее в поперечном сечении, где соединены торец стержня и заделка.
Правила контроля правильности эпюр крутящих моментов
Для эпюр крутящих моментов характерны некоторые закономерности, знание которых позволяет оценить правильность построений.
- Эпюры крутящих моментов всегда прямолинейные.
- На участке, где нет распределенных моментов, эпюра M к – прямая, параллельная оси; а на участке с распределенными моментами – наклонная прямая.
- Под точкой приложения сосредоточенного момента на эпюре M к будет скачок на величину этого момента.
Видео:КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать
Построение эпюр крутящих моментов
Для определения напряжений и деформаций вала необходимо знать значения внутренних крутящих моментов Mk (Mz) в поперечных сечениях по длине вала. Диаграмму, показывающую распределение значений крутящих моментов по длине бруса, называют эпюрой крутящих моментов. Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала.
В простейшем случае, когда вал нагружен только двумя внешними моментами (эти моменты из условия равновесия вала ΣMz=0 всегда равны друг другу по величине и направлены в противоположные стороны), как показано на рис. 5.1, крутящий момент Mz в любом поперечном сечении вала (на участке между внешними моментами) по величине равен внешнему моменту |M1|=|M2|.
Читайте также: Компрессор высокого давления из компрессора для холодильника своими руками
В более сложных случаях, когда к валу приложено несколько внешних моментов, крутящие моменты Mk в поперечных сечениях различных участков вала неодинаковы.
На основании метода сечений крутящий момент в произвольном поперечном сечении вала численно равен алгебраической сумме внешних скручивающих моментов, приложенных к валу по одну сторону от рассматриваемого сечения.
При расчетах на прочность и жесткость знак крутящего момента не имеет никакого значения, но для удобства построения эп. Mk примем следующее правило знаков: крутящий момент считается положительным, если при взгляде в торец отсеченной части вала действующий на него момент представляется направленным по ходу часовой стрелки (рис.5.2).
В технике употребляется терминология « винт с правой нарезкой» или «…с левой нарезкой…», причем правый винт наиболее распространен, являясь стандартом. Полезно заметить, что при навинчивании гайки на правый винт мы прикладываем положительный момент Mкр , а при свинчивании гайки – отрицательный.
При наличии распределенной моментной нагрузки m (рис.5.3) крутящие моменты МК связаны дифференциальной зависимостью
из которой вытекает следующая формула:
где – крутящий момент в начале участка.
Согласно формуле (5.2) на участках с равномерно распределенной нагрузкой m крутящий момент изменяется по линейному закону. При отсутствии погонной нагрузки (m = 0) крутящий момент сохраняет постоянное значение (МК = МКо = const). В сечениях, где к валу приложены сосредоточенные скручивающие моменты, на эпюре МК возникают скачки, направленные вверх, если моменты направлены против часовой стрелки, либо вниз – при обратном направлении моментов.
На рис. 5.4, а изображен стержень, жестко защемленный в правом концевом сечении, к которому приложены три внешних скручивающих момента.
В нашем случае крутящие моменты в их поперечных сечениях удобно выражать через внешние моменты, приложенные со стороны свободного конца бруса.
Это позволяет определять крутящие моменты, не вычисляя реактивного момента, возникающего в заделке.
Крутящий момент Mz1 в сечении I численно равен M1=200 нм и, согласно принятому правилу знаков, положителен.
Крутящий момент Mz2 в сечении II численно равен алгебраической сумме моментов M1 и M1, т.е. Mz2 =200-300=-100 нм, а его знак зависит от соотношения этих моментов.
Аналогичным образом вычисляется крутящий момент Mz3 в сечении III: Mz3 =200-300+500=400 нм.
Изменение крутящих моментов по длине вала покажем с помощью эпюры крутящих моментов. На рис. 5.4, б показана такая эпюра для стержня, изображенного на рис. 5.4, а.
Читайте также: Крестовина карданного вала иж ода 2126 от чего подходит
Каждая ордината эп. Mk в принятом масштабе равна величине крутящего момента, действующего в том поперечном сечении бруса, которому соответствует эта ордината.
В сечении, в котором к брусу приложен внешний скручивающий момент, ордината эпюры изменяется скачкообразно на величину, равную значению этого момента.
Следует учитывать, что наибольший внешний скручивающий момент, приложенный к брусу, не всегда равен наибольшему крутящему моменту, по которому ведется расчет бруса на прочность и жесткость.
Построить эпюру крутящих моментов для жестко защемленного стержня (рис.5.4.1, а).
Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил.
1. Намечаем характерные сечения.
2. Определяем крутящий момент в каждом характерном сечении.
3. По найденным значениям строим эпюру (рис.5.4.1, б).
Рассмотрим расчетную схему вала, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: т (рис. 5.4.2).
Рис. 5.4.2. Построение эпюры внутренних крутящих моментов:
а – расчетная схема; б – первый участок, левая часть; в – второй участок, левая часть;
г – третий участок, правая часть; д – эпюра внутренних крутящих моментов
В исходных сечениях 1–1; 2–2; 3–3 задаются положительными значениями внутренних крутящих моментов М1, М2, М3. Пусть .
Для первого участка (рис. 5.4.2, б):
Для второго участка (рис. 5.4.2, в):
Для третьего участка (рис. 5.4.2, г):
Границы измерения параметра х3 в следующей системе координат:
Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис. 5.4.2, д).
На рис. 5.4.3 дан пример определения по методу сечений внутренних крутящих моментов по участкам и внизу (ри.5.4.3, с) изображена суммарная эпюра Мкр.
Рис.5.4.3. a) заданный стержень с нагрузкой; b) отсеченные части стержня;
с) эпюра крутящих моментов.
В данном случае для консольного стержня вести вычисления удобно, идя справа налево, начав их с 3–го участка.
Участок 3(рис. 5.4.3, b). Неизвестный момент Mкр3 прикладываем к отсеченной части как положительный, после чего пишем условие равновесия отсеченной части:
Участок 2(рис. 5.4.3, b). Положение сечения фиксируем с помощью местной координаты z2 :
Участок 1(рис. 5.4.3, b):
Найдем реактивный момент в заделке M0 из условия равновесия всего стержня Σmz =0, это дает M0 +3∙4+5+5-15=0 и M0 = -7 тм, что совпадает с Mкр1 , найденным на участке 1 по методу сечений. Этого конечно следовало ожидать, так как по существу реактивный момент – это внутреннее усилие, действующее в поперечном сечении, где соединены торец стержня и заделка.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
- Правообладателям
- Политика конфиденциальности
📺 Видео
БАЛКА - 90 СТУДЕНТОВ САМОСТОЯТЕЛЬНО СТРОЯТ ЭПЮРЫ после просмотра этого видео!Скачать
Кручение. Расчет составного вала кольцевого сечения.Скачать
11. Кручение ( практический курс по сопромату )Скачать
ПЗ Часть 3 Эпюра крутящего моментаСкачать
Сопромат. Практическое занятие №1.4Скачать
Вот для чего нужно строить эпюры в сопромате!Скачать
Прочность и жесткость валов. Часть 6: Эпюры моментов выходного вала (цилиндрическая передача).Скачать
Построение эпюры крутящих моментовСкачать
Сопромат. Построение эпюр вала при кручении. Я в вк https://vk.com/id4682924Скачать
КРУЧЕНИЕ. ЭПЮРЫ ЗАКРУЧИВАНИЯ. Углы поворота. СопроматСкачать
Изгиб с кручениемСкачать
4. Построение эпюр в раме ( практический курс по сопромату )Скачать
Практическая №4 Определение реакций нагруженного валаСкачать
Кручение. Часть 1 Общие сведенияСкачать